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a b s t r a c t

A simplified approximate method to analyze the rocking response of SDOF systems lying on compliant
soil is introduced, accounting for soil inelasticity and foundation uplifting. The soil–foundation system is
replaced by a nonlinear rotational spring, accompanied by a linear rotational dashpot, and linear
horizontal and vertical springs and dashpots. Considering a square footing on clay under undrained
conditions, the necessary moment–rotation (M–θ) relations are computed through monotonic pushover
finite element (FE) analyses, employing a thoroughly-validated constitutive model. Cyclic pushover
analyses are performed to compute the damping–rotation (CR–θ) relations, necessary to calibrate the
rotational dashpot, and the settlement–rotation (Δw–θ) relations, required to estimate the dynamic
settlement. The effectiveness of the simplified method is verified through dynamic time history analyses,
comparing its predictions with the results of 3D FE analyses. The simplified method is shown to capture
the entire rotation time history θ(t) with adequate accuracy. The latter is used to compute the time
history of dynamic settlement w(t), employing a simplified approximate procedure. The proposed
simplified method should, by no means, be considered a substitute for more sophisticated analysis
methods. However, despite its limitations, it may be utilized for (at least preliminary) design purposes.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Soil–foundation–structure interaction (SFSI) has been the
object of extensive research over the last decades in an attempt
to gain deeper insight into the seismic performance of structures
(e.g., [35,59,36,21,57,61,22]). Nevertheless, a principal goal of
foundation design, as entrenched in current seismic codes, is to
maintain “elastic” soil–foundation response. According to capacity
design principles, full mobilization of strength in the foundation is
prevented, by guiding failure onto the superstructure (through
application of appropriate over-strength factors). Strong earth-
quakes over the last 20 years, though, have shown that inelastic
soil–foundation response may be inevitable. In fact, seismic
records from the earthquakes of Northridge (1994) and Kobe
(1995) have proved that very high levels of PGA and PGV can be
experienced in near-fault zones. The recent Tohoku (2011) earth-
quake is another example of dramatically strong recorded PGA of
up to 3 g [17].

Apparently, under such severe seismic shaking the assumption
of elastic soil–foundation response cannot be considered realistic.

Yet, it has been suggested by a growing body of researchers that
soil–foundation nonlinear response may have a beneficial effect on
the superstructure and it should be therefore considered in design
(e.g., [50,24,53,18,46,54,32,19,3,2,27,28,38,39]). Nonlinear founda-
tion behavior may involve sliding and/or uplifting of the foundation
from the supporting soil, and/or mobilization of soil bearing
capacity. In any of these cases, the finite capacity of the foundation
may act as “rocking isolation” [46], limiting the inertia forces
transmitted onto the superstructure, thus protecting it against
seismic motions exceeding its design. Besides, such a design
alternative offers greater safety margins in terms of ductility, since
it exploits the inherent ductility associated with progressive soil
failure.

To this end, an urgent need is arising to explicitly account for
nonlinear SFSI and its beneficial effects in modern seismic design.
Nonlinear foundation response could be allowed during strong
seismic shaking, while ensuring that the developing displacements
and rotations will not jeopardize the structural integrity of the
superstructure. So far, a substantial amount of research has been
conducted, including experimental (e.g. [45,18,41,37,9,51,19]) and
analytical studies: (i) finite element (FE) or boundary element
approaches, in which both the structure and the soil are modeled
together in one single system through an assemblage of elements
(e.g. [11,10,58,44,31,23,30]); (ii) rigorous plasticity-based macro-
element formulations (e.g., [49,50,43,13,12,16]); (iii) Winkler-based
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approaches, where the soil is replaced by a series of distributed
nonlinear springs and dashpots (e.g., [33,1,56]); and (iv) simplified
approaches, such as the iterative procedure proposed by Paolucci
et al. [52] to be incorporated to the Direct Displacement-Based
Design (DDBD) method [55].

Nonlinear FE simulation, where both the superstructure and the
soil–foundation system are modeled as a whole, is probably one of
the best ways to simulate the response of rocking-isolated systems.
However, such an approach is not computationally efficient and
requires (reasonably) sophisticated and adequately validated consti-
tutive models, rendering its application difficult in everyday engi-
neering practice. Meanwhile, the current state-of-the art in nonlinear
analysis of foundations emphasizes the development of macro-
element models. According to this approach, the entire soil-
foundation system is replaced by a single element, capable of
portraying the rocking response in terms of rotation and dynamic
settlement. However, the developed macro-element models have not
yet been introduced in commercial FE codes and therefore, their use
is limited. Moreover, extensive calibration is required in order to
produce ready-to-use parameter “libraries” – a major issue that
should be addressed in order to encourage their use in practice.

On the other hand, simplified methods that account for non-
linear SFSI, such as the procedure proposed by Paolucci et al. [52],
may have substantial benefits, including: (i) easy implementation
in commercial numerical analysis codes; (ii) limited calibration
requirements; and (iii) applicability by non-specialists. Moreover,
such simplified consideration of the nonlinear response of the soil-
foundation system allows for more detailed and realistic modeling
of the superstructure, which is likely to be a key issue in real-life
engineering projects. Last but not least, by avoiding complicated
3D FE modeling, great savings in terms of computation time can be
achieved. Consequently, the development of simplified approaches
to account for nonlinear SFSI is of paramount importance in order
to facilitate the application of such novel seismic design concepts
in engineering practice.

Aiming to overcome the aforementioned barriers concerning
the existing more sophisticated methods of analysis (such as
macro-elements and 3D FE modeling), and to provide a framework
for future research on the subject, this paper introduces a
simplified approximate method to simulate the seismic response
of a system rocking on compliant soil, accounting for fully inelastic

soil response and geometric nonlinearities (such as foundation
uplifting and second order effects). To demonstrate its effective-
ness, the proposed simplified method is applied to a single degree
of freedom (SDOF) system, representative of a bridge pier, compar-
ing the predicted response with the results of more rigorous 3D FE
analyses. The introduced simplified analysis method should, by no
means, be viewed as capable of reproducing all aspects of complex
soil response, or as a substitute of more elaborate methods.
However, despite its limitations, it may be utilized for (at least
preliminary) design purposes.

2. Problem definition and outline of the simplified method

As shown in Fig. 1a, the investigated problem refers to a SDOF
system of height h carrying concentrated mass m, lying on a
square surface foundation of width B on a clay stratum of depth z,
undrained shear strength Su, shear wave velocity Vs, and density ρ.
To focus on the nonlinear response of the foundation, the oscillator
is assumed practically rigid. Inspired by the simplified procedure
proposed by Paolucci et al. [52], a simplified method is introduced
to account for nonlinear SFSI effects. As illustrated in Fig. 1b, the
soil-foundation system is replaced by springs and dashpots (in
parallel). Since the considered problem is rocking-dominated, the
horizontal (KH and CH) and vertical (KV and CV) springs and
dashpots can be assumed elastic, and published solutions are
directly applicable (e.g., [21]). As shown by Gajan and Kutter [20],
the response is rocking-dominated when h/B41. In such a case,
the cyclic rotation is much larger than the normalized cyclic
sliding displacement, irrespective of the factor of safety FS. Hence,
the nonlinearities related to sliding can be ignored, which means
that the related horizontal springs and dashpots can be reasonably
approximated as elastic.

With respect to the rotational degree of freedom, instead of
using an equivalent linear rotational spring, requiring an iterative
procedure to capture the nonlinear response of the soil-foundation
system (as in [52]), the proposed simplified method employs a
nonlinear rotational spring accompanied by a linear dashpot, the
properties of which are estimated through nonlinear 3D FE
analyses. After the necessary calibration, the proposed procedure
can be quite straightforward, not requiring iterations to compute

  

Fig. 1. Problem definition: (a) SDOF system lying on a square surface foundation on a homogeneous clay stratum; and (b) proposed simplified method where the soil–
foundation system is replaced by a nonlinear rotational spring KR, accompanied by a linear dashpot CR, as well as linear vertical and horizontal springs and dashpots, KV and
CV , and KH and CH, respectively.
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the response of the rocking foundation–structure system. Since
such elements can be easily introduced in commercial FE codes,
capable of performing dynamic time history analyses, the pro-
posed methodology can be easily applicable in practice, without
requiring calibration of sophisticated models and avoiding the
need for time consuming 3D FE analyses. As it will be shown later
on, the proposed method may capture with adequate accuracy the
entire rotation time history θ(t). The latter is used to compute the
time history of dynamic settlement w(t), employing a simplified
approximate procedure, also based on FE analysis results. A similar
procedure had been earlier postulated by Kutter et al. [42] and
Deng et al. [14], who suggested that the settlement can be
correlated with the rotation time history θ(t).

In order to implement the proposed method, three relations are
required, all of them being a function of the factor of safety against
vertical loads FS ¼Nuo=N, where Nuo is the bearing capacity of the
footing under purely vertical loading, and N ¼ mg is the vertical
load due to the mass of the superstructure (assuming that the
footing is massless): (a) the moment–rotation (M–θ) relation,
required to define the nonlinear rotational spring KR; (b) the
damping coefficient–rotation (CR–θ) relation, required to define
the rotational dashpot CR; and (c) the dynamic settlement–rota-
tion (Δwdyn–θ) relation, required to compute the settlement. The
three necessary relations are computed employing the FE method,
applying a thoroughly validated soil constitutive model [4], and
focusing on square shallow foundations. The same methodology
can be employed for other footing shapes (rectangular, circular,
strip), or for embedded foundations (see also [25]). Alternatively,
the required relations can be produced experimentally, on the basis
of cyclic pushover tests (e.g., [40,18,5]). Thus, the practicing
engineer may directly apply the proposed methodology utilizing
the provided FE-derived relations, or select from the literature
other relations that may be considered more appropriate.

The vertical component of the seismic motion has not been
included in the analyses, and its effect on settlement accumulation
cannot be addressed through the presented simplified method.
Although this is clearly a limitation of the proposed simplified
analysis method, it is not expected to have an appreciable effect on
the response, at least as far as the natural vertical component of
the earthquake is concerned. The latter is typically of much higher
frequency and not correlated to the horizontal component. Its
effect has been shown to be of minimal importance in Kourkoulis
et al. [39], using a 2-storey rocking-isolated frame structure as an
example. However, a valley-generated parasitic vertical compo-
nent can be detrimental for overlying structures, and its effect
should be taken into account. In contrast to the natural vertical
component, being a direct result of geometry, it is fully correlated
and of practically the same dominant period with the horizontal
component [26], and can therefore have a detrimental effect on
system performance and the accumulated settlements.

3. Numerical analysis methodology

The three necessary relations (M–θ, CR–θ, and Δw–θ) are derived
through 3D FE analysis of the foundation–structure system. The M–θ
relations are computed on the basis of displacement-controlled
monotonic pushover analyses; cyclic pushover analyses are con-
ducted to derive the CR–θ and Δw–θ relations. Then, the seismic
performance of the rocking system is computed through dynamic
time history analysis: (a) employing the 3D FE model of the soil–
foundation–structure system; and (b) applying the proposed
simplified method. The results of the two approaches are com-
pared to verify the effectiveness of the simplified method, and to
derive insights on the main factors affecting the response.

The 3D FE model (Fig. 1a) comprises the entire soil–founda-
tion–structure system, taking account of material (soil) and geo-
metric nonlinearities (uplifting and P–Δ effects). As illustrated in
Fig. 2, taking advantage of problem symmetry (since rotation on a
single plane is studied), only half of the soil–foundation–structure
system is modeled to reduce the computational cost. The bridge
pier is modeled with elastic beam elements, while the deck is
represented by a concentrated mass element. As previously men-
tioned, to focus on foundation performance, the oscillator is
assumed practically rigid. The footing is modeled with elastic
(8-node) continuum elements, and is assumed massless. The soil,
consisting of an idealized homogeneous clay stratum, is also
modeled with continuum elements, but is of course nonlinear.
Special contact elements are introduced at the soil–foundation
interface, permitting detachment from the supporting soil. “Free-
field” boundaries are used at the two lateral (normal to the
rotation plane) boundaries of the model. However, as discussed
in detail in Kourkoulis et al. [38], even elementary boundaries
placed at an adequately large distance from the footing would be
sufficient for such rocking-dominated problems.

Soil behavior is modeled through a nonlinear kinematic hard-
ening model, with a Von Mises failure criterion and associated
flow rule [4]. The evolution law of the model consists of a
nonlinear kinematic hardening component, which describes the
translation of the yield surface in the stress space, and an isotropic
hardening component, which defines the size of the yield surface
as a function of plastic deformation (see also [29]). Calibration of
model parameters requires knowledge of: (a) the undrained shear
strength Su; (b) the small-strain stiffness (expressed through Go or
Vs); and (c) the stiffness degradation (G–γ and ξ–γ curves). More
details on the model, as well as model calibration and comparisons
of model predictions in terms of G–γ and ξ–γ curves against
experimental results can be found in [4].

In the case of the simplified approach (Fig. 1b), the super-
structure is modeled using exactly the same model, but the soil–
foundation system is replaced by linear horizontal (KH and CH) and
vertical (KV and CV) springs and dashpots, a nonlinear rotational
spring KR, and a linear rotational dashpot CR. While KH, KV, CH, and
CV are calibrated on the basis of published solutions [21], the
derived M–θ and CR–θ relations are used for KR and CR. The
simplified model is subjected to dynamic time history analysis,
employing as seismic excitation the acceleration time history at
the ground surface. Based on the computed rotation time history θ(t),

Fig. 2. Rigorous 3D finite element model comprising the entire soil–foundation–
structure system, taking account of material (soil) and geometric nonlinearities
(uplifting and P–Δ effects). Taking advantage of problem symmetry, only half of the
model is analyzed.
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and the derived Δw–θ relations, a simplified procedure is employed to
compute the settlement time history w(t).

3.1. Model validation

The 3D FE modeling technique has been validated against UC
Davis centrifuge model tests [40,18] and large-scale tests [15,48],
as discussed in Anastasopoulos et al. [4], but also against reduced-
scale tests conducted at the Laboratory of Soil Mechanics of the
National Technical University of Athens [6]. One such comparison
is reproduced in Fig. 3, referring to a rectangular foundation with
FS¼2.6, resting on remolded San Francisco Bay mud. Conducted at
n¼20 g, cyclic loading was applied in packets of increasing
amplitude. The second of those packets is illustrated herein,
having maximum rotation amplitude θmaxE0.03 rad. The model
prediction is adequately accurate both in terms of footing moment
capacity MultE300 kNm (Fig. 3a), and with respect to the accu-
mulated settlement (Fig. 3b). The M–θ loops reveal strongly non-
linear response, accompanied by substantial soil plastification. The
analysis seems to under-predict energy dissipation, something
that is probably associated with an under-prediction of foundation
uplifting. Still though, the accumulation of settlement is predicted
with remarkable accuracy.

The model is further validated herein against published failure
envelopes for surface foundations subjected to combined M–Q–N
loading [11,30]. One such comparison against the failure envelopes of
Gourvenec [30] is portrayed in Fig. 4, referring to an h/B¼2 SDOF
system lying on shallow footings of various shapes (strip B/L¼0;
square B/L¼1; rectangular B/L¼3; and circular, where B refers to the
width of the side normal to the axis of rotation) ignoring P–Δ effects
(to produce compatible results). The plot presents the normalized

foundation moment capacityMu/SuB3 as a function of the normalized
vertical load χ¼N/Nuο¼1/FS (where Nuο is the bearing capacity under
purely vertical loading). The numerical prediction compares well

Fig. 3. Model validation against UC Davis centrifuge model tests [40] – cyclic pushover of a rectangular footing of static safety factor FS¼2.6, resting on remolded San
Francisco Bay mud (second loading packet). Comparison of numerical prediction with experimental measurement: (a) moment–rotation (Μ–θ), and (b) settlement–rotation
(w–θ) response.

Fig. 4. Comparison of FE analysis results with published failure envelopes [47,30]
for various B/L ratios: normalized moment capacity Mu/SuB3 with respect to
normalized vertical load χ¼N/Nuo (¼1/FS).

Fig. 5. Square shallow footing subjected to monotonic pushover loading. Snapshots
of deformed mesh with superimposed plastic strain contours for: (a) Fs¼10, and (b)
Fs¼2 ; (c) moment–rotation (Μ–θ) response for Fs¼10 and 2.
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with the classic solution of Meyerhof [47], overestimatingMu/SuB3 by
about 10% for χ40.3 (i.e., for FSo3). Ignoring P–Δ effects, the
moment capacity of the foundation is maximized for a critical value
of the safety factor against vertical loads FS¼2 (χ¼0.5).

Admittedly, the model employed herein has not yet been
validated for all possible combinations of moment to shear ratio,
embedment depth, and footing shape. While there is a breadth of
failure envelopes in the literature, the experimental data dealing
with cyclic or dynamic loading are much more limited. Specific
cases have been tested experimentally, and only these can and have
been used for validation as summarized in Anastasopoulos et al. [7].

4. Moment–rotation relations

TheM–θ relations are computed through displacement-controlled
monotonic pushover analyses, utilizing the previously presented 3D
FE model. To derive results of generalized applicability, the analysis is
conducted following the dimensional formulation presented in
Kourkoulis et al. [38]. The FE analyses are conducted for different
factors of safety against vertical loading FS¼2, 2.5, 3.3, 5, and 10
(corresponding to χ¼Ν/Nuο¼0.5, 0.4, 0.3, 0.2, and 0.1). Static factors
of safety FSo2 are rarely applied in practice (to limit settlement),
and are therefore not considered herein. On the other hand, for
FS410 the rocking response is almost purely uplifting-dominated,
with soil inelasticity playing only a minor role. For the case of clay,
this has been shown in Gazetas et al. (2013). In the case of sand, soil
nonlinearity may be important even for much larger FS. All of the
results presented herein refer to a relatively slender system, having
a slenderness ratio h/B¼2 (corresponding to a slenderness ratio
H/B¼4 of the equivalent rigid block, where H¼2h).

Example analysis results are depicted in Fig. 5, comparing the
monotonic pushover response of a (very) lightly-loaded (FS¼10) to
that of a heavily-loaded (FS¼2) footing. As revealed by the snap-
shots of deformed mesh with superimposed plastic strain con-
tours, while the response of the lightly-loaded footing is clearly
uplifting-dominated (Fig. 5a), substantial soil yielding is observed
in the case of the heavily-loaded (Fig. 5b). In other words, the
decrease of FS tends to diminish the extent of uplifting, leading to
an increase of soil plastification at the same time. The moment–
rotation (M–θ) response of the two footings is compared in Fig. 5c.
In accord with the failure envelopes of Fig. 4, the moment capacity
of the heavily-loaded footing is substantially larger than that of the
lightly-loaded. Exactly the opposite is observed in terms of the
initial (i.e., for θ-0) rotational stiffness KR,0, with the lightly-
loaded footing being substantially stiffer.

To define the necessary relations, the M–θ response is divided
in three characteristic phases, which are described in detail in the
next sections: (a) quasi-elastic response (for very small rotation
θ-0); (b) plastic response (referring to the ultimate capacity, for
large rotation θ); and (c) nonlinear response (which is the inter-
mediate stage between the quasi-elastic and the plastic phases).

4.1. Quasi-elastic response

The first phase of response refers to very small rotation θ. The
effective (secant) rotational stiffness is a function of θ and FS:
KR ¼ f ðθ; FSÞ. For a given factor of safety FS, the initial (i.e., for θ-0)
rotational stiffness can be defined as

KR;0 ¼ KRð0; FSÞ ð1Þ
As shown in Fig. 5c, for the lightly-loaded (FS¼10) footing, KR,0 is
very close to the purely elastic rotational stiffness [21]:

KR;elastic ¼ 3:65
Gb3

1�ν
ð2Þ

where b¼B/2, G is the small strain shear modulus of soil, and ν the
Poisson's ratio. Since the rocking mechanism is quite shallow,
estimating G as the average shear modulus to a depth equal to the
width B of the foundation is considered as a reasonable approx-
imation. In fact, this has been indirectly confirmed by the reduced-
scale experiments reported in Anastasopoulos et al. [5,6], where it
was shown that the soil properties at depth larger than B are not
affecting the rocking response. In stark contrast, a substantial
difference is observed for the heavily-loaded (FS¼2) footing. This
reduction of KR,0 is directly related to the initial soil yielding due to
the imposed vertical load N (before application of moment load-
ing). In other words, even before the lateral loading is applied, the
soil underneath the foundation behaves in a nonlinear manner,
and this affects the initial value of the rotational stiffness KR,0.
Based on the 3D FE analysis results, KR,0 can be (approximately)
expressed as

KR;0 ¼ KR;elastic 1�0:8
1
FS

� �
ð3Þ

The 0.8 parameter in the above equation has been “fitted” to
analysis results and can be claimed to be valid for FSZ1.1. Given
that the latter refer to clay, the specific parameter will not be
applicable to sand. Still though, Eq. (3) is not expected to be
different in qualitative terms. This will be covered in a forthcoming
publication, based on recently conducted reduced-scale experi-
ments of rocking foundations lying on sand.

4.2. Plastic response

This phase refers to the ultimate capacity of the footing, and is
quite straight-forward to define on the basis of the previously
discussed failure envelopes. As thoroughly discussed in Gazetas
et al. [25], the failure envelope can be defined as follows (see also
Fig. 4):

Mu

NuB
¼ 0:55 1� Nu

Nuo

� �
ð4Þ

where Nuo is the bearing capacity for purely vertical loading
[47,30]:

Nuo � ðπþ3ÞSuB3 ð5Þ
The above expression (Eq. (4)) exceeds by just 10% the classical
solution of Meyerhof [47], the failure envelopes of Gourvenec [30],
and to what is suggested by Deng et al. [14]. Observe that the
maximum moment capacity MuE0.138NuB is attained for Nu/
Nuo¼0.5 (or Fs¼2), being just a little higher than the classic value
Mu¼0.125Nuo.

4.3. Nonlinear response

This corresponds to the intermediate phase, bridging the gap
between the quasi-elastic and plastic response. If the soil behaved
as an ideally elastic–plastic material, there would be no need to
consider this intermediate phase of response, and the previously
described solutions would be enough to completely define the
necessary M–θ relations. However, as revealed by Fig. 5c, the soil–
foundation system exhibits strongly nonlinear response long
before reaching its ultimate capacity. Hence, there is a need for a
“connection” between the quasi-elastic and the plastic part of the
M–θ relations. This is performed on the basis of 3D FE analysis
results, following the dimensional formulation presented in Kour-
koulis et al. [38] and Gazetas et al. [25].

As shown in Fig. 5c, the initiation of the nonlinear phase is a
function of Fs. While the lightly-loaded (Fs¼10) footing starts
exhibiting nonlinear response for θE0.02�10�2 rad, in the case
of the heavily-loaded (Fs¼2) nonlinearity becomes observable
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much later, for θE0.08�10�2 rad. This difference is due to the
vertical load N acting on the foundation, the increase of which
tends to hinder separation and uplifting. In the absence of soil
nonlinearity, considering a footing (of any shape) rocking on
elastic half-space, the overturning moment to initiate uplifting
(i.e., the contact stresses at the edge of the footing are reduced to
zero) would be [8]:

Muplif t �
NB
4

ð6Þ

where B is the width of the footing in the direction of rocking.
Therefore, the uplifting rotation θuplift can be defined as

θuplif t �
N B

4 KR; elastic
ð7Þ

As previously discussed, the initial quasi-elastic rotational stiffness
KR,0 decreases with the decrease of Fs due to the increasingly
important initial soil yielding (due to the vertical load N, before
application of moment loading). Therefore, when considering soil
inelasticity it is reasonable to assume that the equivalent “uplift-
ing” rotation will be a function of KR,0 rather than KR,elastic. Hence,
combining Eqs. (3) and (7), a characteristic rotation θS is defined:

θS �
NB

4KR;0
¼ NB

4KR;elastic 1�0:8 1
FS

� � ð8Þ

As shown in Fig. 6a, θS can be used to normalize the rotation θ,
allowing the expression of the M–θ relations in non-dimensional
form: M/SuB3¼ f (θ/θS). Thanks to the normalization of θ with θS,
the shape of the moment–rotation curves is almost identical for all
cases examined, irrespective of FS. Hence, if we normalize M/SuB3

with the moment capacity Mu/SuB3 of each curve, the moment–
rotation curves of Fig. 6a “collapse” in the single non-dimensional

curve of Fig. 6b. The latter is simplified further, being approximated
by piecewise linear segments. The resulting non-dimensional M–θ
relation encompasses: (a) a quasi-elastic branch, for θ/θsr1/3; (b) a
plastic branch, for θ/θs410; and (c) an intermediate nonlinear
branch, for 1/3oθ/θsr10, consisting of four segments, as illustrated
in Fig. 6b.

5. Damping–rotation relations

For the rocking-dominated systems considered herein, the
damping comprises three different components: (a) radiation
damping, (b) hysteretic damping, and (c) damping due to impacts.
In the idealized case of elastic soil response (without uplifting or
soil inelasticity), radiation is the main source of damping: waves
emanating from the dynamically oscillating foundation disperse to
infinity, “absorbing” energy from the rocking system [21]. How-
ever, when considering strongly inelastic response due to material
(soil) and geometric nonlinearities (uplifting), radiation damping
is practically negligible compared to hysteretic damping. Under
strong seismic shaking, which is the main target of the proposed
simplified method, the fundamental period Tsoil of the soil layer
will be significantly lower than both the predominant period Tp of
the earthquake and the natural period Tn of the rocking system –

especially in view of the fact that the latter increases substantially
due to uplifting. It is noted that such period elongation is not a
special attribute of rocking systems, but is the rule for any
nonlinear system. As a result, the system will respond below its
“cutoff” frequency (i.e., the frequency below which radiation
damping is not significant, see [21]), and radiation damping will
be of the order of 1% to 2%. Damping due to impacts is also
considered negligible compared to hysteretic damping, being
important only when soil inelasticity is limited.

Based on the above, emphasis is placed on the hysteretic
component of rotational damping. The latter is computed on the
basis of displacement-controlled cyclic pushover analyses, utiliz-
ing the 3D FE model. The FE analyses are conducted for the
previously discussed factors of safety against vertical loading
FS¼2, 2.5, 3.3, 5, and 10. The rotational damping coefficient for
the simplified SDOF model is assumed to be a function of the
effective (secant) rotational stiffness KR, the hysteretic damping
ratio ξ, and a characteristic frequency ω:

CR �
2 KRξ

ω
ð9Þ

while the effective (secant) stiffness KR is computed utilizing the
previously discussed M–θ relations, the hysteretic damping ratio
ξ is computed through the M–θ loops of the cyclic pushover
analyses. For this purpose, the SDOF is subjected to cyclic rotation
of increasing amplitude. The hysteretic damping ratio ξ is calcu-
lated according to its standard definition:

ξ� ΔΕ=Ε
4π

ð10Þ

where ΔΕ is the area of the M–θ loops, representing the energy
consumed during one cycle of loading, and E is the corresponding
elastic energy. As discussed below, the selection of the character-
istic frequency ω is not that straightforward.

The results of the analyses are summarized in Fig. 7a, where the
hysteretic damping ratio ξ is plotted as a function of the dimen-
sionless cyclic rotation amplitude θ/θS and the factor of safety
against vertical loading FS. As expected, ξ increases with the
decrease of FS, since energy dissipation increases with soil non-
linearity (the area enclosed by the M–θ loops becomes larger).
Exactly for the same reason, ξ is an increasing function of θ/θS.
Exactly the opposite is observed for the normalized effective
(secant) rotational stiffness KR/KR,elastic, which (as also expected)

Fig. 6. (a) Normalized moment–rotation response for different factors of safety
against vertical loading FS; and (b) non-dimensional unique moment–rotation (M–θ)
relation and simplified piecewise approximation.
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increases with FS, while being a decreasing function of θ/θS
(Fig. 7b): the increase of soil inelasticity leads to a decrease of
the secant stiffness. As a result, being the product of KR and ξ
(Eq. (10)) the damping coefficient CR is not that sensitive to θ/θS
(assuming a constant value of ω). As shown in Fig. 7c, the
normalized damping coefficient CR/KR,elasticω

�1 plotted with
respect to θ/θS is a “bell shaped” curve, with its maximum at
θ/θSE1. Interestingly, if we plot CR/KR,elasticω

�1 as a function of the
absolute value of θ (Fig. 7d), the maximum is observed for roughly
10�3 rad, for all cases examined. The value of the maximum CR/KR,

elasticω
�1 increases with the decrease of FS.

As revealed by the derived CR–θ relations, a nonlinear dashpot
would ideally be required. Nevertheless, since most commercial FE
codes accept a single value of CR, a simplifying approximation is
proposed in order to maintain simplicity. As discussed below, the
numerical prediction using the simplified model compares well
with the results of the more rigorous 3D FE model, when the
maximum value of the normalized CR–θ curve is adopted. There-
fore, in terms of a reasonable simplifying assumption, it is
recommended to directly use this value to compute the necessary
CR as a function of FS only, as indicated in Fig. 7d. In case another
value of FS is to be studied (not included herein), the normalized
damping coefficient may be obtained through linear interpolation
(an acceptable simplification, given all of the above simplifying
assumptions).

As previously discussed, the absolute value of CR also depends
on the angular frequency ω¼2π/T. The latter is also a function of
rotation, as the effective period Tn of the rocking system increases
with θ/θS [25]. In order to maintain simplicity, a single value of Tn is
needed to compute the absolute value of CR. Based on comparisons
between the simplified method and the 3D FE model (to be
discussed later on), it is considered as a reasonable simplification
to use the initial natural period Tn,0 of the rocking system (for
θ/θS¼0). At this point, it should be noted that, although the system
is subjected to forced oscillation, the corresponding value of CR is
not related to the predominant period of the excitation Tp. It
appears that the initial natural period Tn,0 is quite dominant, at

least for the slender systems considered herein (of relatively large
h/b). Within this realm, considering a rigid oscillator (in essence, an
inverted pendulum [34]) and assuming that the horizontal displace-
ment is negligible compared to the rocking mode, the initial rocking
period (for θ/θS¼0) can be written as

Tn;0 ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mh2

KR;0�mgh

s
¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mh2

KR;elastic 1�0:8 1
FS

� �
�mgh

vuuut ð11Þ

In the case of rocking-isolated systems, such as those consid-
ered herein, the fixed-base fundamental period of the super-
structure is typically much lower than that of the rocking
system: as soon as the foundation starts uplifting, the effective
period increases almost exponentially with θ (e.g., [25]). Hence,
at least for the systems considered herein, the assumption of a
rigid oscillator is not far from reality. As it has been shown in
previous studies (e.g., [3,27]), for rocking-isolated systems the
drift due to the flexural deformation of the superstructure is
negligible compared to the rotational drift (i.e., the drift due to
foundation rotation). Hence, the efficacy of the method in terms of
prediction of the drift shall not be challenged by the flexibility of
the oscillator. Naturally, this will not be the case for
conventionally-designed systems, in which case the flexural drift
will be much larger than the rotational. In such a case, the
response of the foundation will be quasi-elastic, its moment
capacity will not be mobilized, and simpler elastic methods are
directly applicable.

6. Settlement–rotation relations

The cyclic settlement is computed through displacement-
controlled cyclic pushover analyses, utilizing the more rigorous
3D FE model. The FE analyses are conducted for the previously
discussed factors of safety against vertical loading FS¼2, 2.5, 3.3,
5, and 10. As for the damping–rotation relations, the system
is subjected to cyclic loading of increasing amplitude. Example

Fig. 7. (a) Damping ratio ξ with respect to the dimensionless rotation θ/θS and factor of safety against vertical loading Fs; (b) normalized rotational stiffness ΚR(θ,FS)/KR,elastic

with respect to θ/θS and Fs; (c) dimensionless damping coefficient CR/KR,elasticω
�1 with respect to θ/θS and Fs ; and (d) CR/KR,elasticω

�1 with respect to θ and Fs.
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analysis results are presented in Fig. 8a for a square footing of FS¼2.
For each cycle of loading, the cyclic settlement Δw (due to one
complete loading cycle) is computed, as schematically illustrated in
Fig. 8b. The same procedure is applied for all the other factors of
safety FS. A similar correlation of Δw with cyclic rotation θ has been
earlier suggested by Gajan et al. [18] on the basis of experimental
results of shallow foundations lying on sand.

The resulting settlement–rotation relations are summarized in
Fig. 9, referring to the settlement Δw normalized with B, with
respect to the rotation θ and the factor of safety against vertical
loading FS. In contrast to the previously discussed M–θ and CR–θ
relations, where the normalization of θ with θS had certain
advantages, the settlement–rotation relations are more convenient
when plotted with respect to the absolute value of θ, as they are
almost linear (with the exception of small values of θ). This allows
their approximation with a simplified linear expression, as shown

in Fig. 9:

Δw=B� χ2jθj ¼ 1

F2S
θjj ð12Þ

It should be noted that the optimum “fit” of FE analysis results is
obtained with an exponent of 2.2 (instead of 2) in Eq. (12).
However, given the approximate nature of the proposed proce-
dure, the above simplified expression is considered preferable and
conservative (especially for large values of FS). As previously
discussed for Eq. (3), the specific parameters have been computed
for clay and cannot be directly applicable to sand. Quite interest-
ingly, the range of values predicted by Eq. (12) compares qualita-
tively well with the experimental results of Gajan et al. [18], which
refer to shallow foundations lying on sand. According to the latter,
for θE0.05 rad the dimensionless cyclic settlement Δw/B ranges
from 0.002 for FS47 to roughly 0.01 for 2oFSr3.5.

The simplified procedure to compute the dynamic settlement
time history w/B(t) is outlined in Fig. 10 through an illustrative
example, referring to a square footing of FS¼2.5 subjected to seismic
shaking with the Sakarya record. Fig. 10a compares the numerical
prediction of the simplified method to the 3D FE analysis. As
discussed in more detail in the ensuing, the proposed simplified
model captures the rotation time history with quite reasonable
accuracy (especially taking account of the various simplifying
assumptions it entails). As sketched in Fig. 10b, the computed
rotation time history θ(t) is used to directly compute the settlement
time history w/B(t), according to the following procedure:

(a) The computed (using the simplified model) rotation time
history θ(t) is split into a finite number of half-cycles (θ1…θ6
for the example time window shown herein);

(b) For every half-cycle of amplitude θ, the cyclic settlement is
computed using the previously derived settlement–rotation
relations. It is assumed that each half-cycle produces (approxi-
mately) half the cyclic settlement that is computed using
Eq. (12) (which corresponds to a compete cycle of rotation):
i.e., a half-cycle of amplitude θ1 is assumed to generate
dynamic settlement Δw1¼χ2θ1/2;

(c) The settlement time history is put together by assuming that
each half-cycle settlement lasts as much as the corresponding
rotation half-cycle (definitely, a reasonable assumption). For
example, the first half-cycle settlement Δw1 is assumed to last
t1, i.e., as much as the first half-cycle of rotation θ1. Each half-
cycle settlement is added to the previous one, leading to the
assembly of the entire time history of settlement (presented
herein in normalized form).

Apparently, such simplified calculation can only provide an
estimate of the accumulated settlement at the end of each loading
half-cycle. Obviously, the uplifting-generated upward movement
of the foundation during a rotation half-cycle cannot possibly be
captured.

7. Effectiveness of the simplified method

In order to demonstrate the effectiveness of the proposed
simplified method, this section compares the numerical prediction
of the simplified model with the results of nonlinear dynamic time
history analysis using the more rigorous 3D FE model. The
analyses are conducted considering a specific SDOF system of
height h¼4 m and B¼2 m, lying on stiff (over-consolidated) clay
of undrained shear strength Su¼150 kPa. The comparison is
performed for different factors of safety against vertical loading
FS¼2, 2.5, 3.3, and 5.

Fig. 8. Example cyclic pushover loading results for a square footing with FS¼2:
(a) normalized settlement–rotation (w/B–θ) response; and (b) resulting cyclic
settlement–rotation relation.

Fig. 9. Simplified cyclic settlement–rotation (Δw/B–θ) relations for various factors
of safety against vertical loading FS (dotted lines) compared to the simplified linear
approximation (continuous lines).
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As previously mentioned, apart from the nonlinear rotational
spring and the accompanying linear rotational dashpot, the
simplified model also requires horizontal (KH and CH) and vertical
(KV and CV) springs and dashpots. For the rocking-dominated
problem studied herein, the latter can be assumed linear elastic,
and computed by directly applying published solutions [21]:

KV ¼ 4:54Gb
1�v

; KH ¼ 9Gb
2�v

ð13Þ

CV ¼ 2KVξ

ω
; CH ¼ 2KHξ

ω
; ð14Þ

with respect to KH and KV (Eq. (13)), the initial small strain shear
modulus G has been assumed. In the latter (Eq. (14)), ξ is assumed
equal to 0.05 and ω¼2π/Tn,0, where Tn,0 is the initial fundamental
period of the rocking system (Eq. (11)). Although both choices are
admittedly quite arbitrary, according to initial sensitivity analyses,
the performance of the simplified model is insensitive to the
values of KH, CH, KV, and CV ─ at least for the relatively slender
systems considered herein.

The SDOF system is initially subjected to artificial sinusoidal
excitations, to check the effectiveness of the proposed methodology

under idealized conditions, and then to real moderate to strong
intensity seismic records of (Fig. 11). Before proceeding to the
comparisons, the results of initial sensitivity analyses are briefly
discussed.

7.1. Sensitivity with respect to CR

Recognizing that most commercial FE codes do not accept
nonlinear dashpots, in order to maintain simplicity a linear dash-
pot is considered. Within this realm, a simplifying approximation
is proposed, assuming the maximum value of the normalized CR–θ
curves of Fig. 7d. Moreover, the damping coefficient CR also
depends on the angular frequency ω¼2π/T, and since the effective
period Tn of the rocking system is a function of rotation, an
additional simplifying approximation has been proposed, using
the initial natural period Tn,0 of the rocking system (Eq. (11)) to
compute CR. In this section, the validity of these approximations is
tested through sensitivity analysis with respect to the damping
coefficient CR.

With respect to ω, two radically different assumptions are
comparatively assessed: (a) the proposed initial natural frequency
of the rocking system ωn¼2π/Τn (¼2π/0.39 s¼16.1 rad/s); and (b)

Fig. 10. Example calculation of dynamic settlement time history w/B(t) for a square footing having FS¼2.5 subjected to seismic shaking with the Sakarya record:
(a) comparison of numerical prediction using the simplified method to the rigorous 3D FE analysis; and (b) illustration of the simplified procedure, where the time history of
dynamic settlement is computed directly through the computed rotation time history, making use of the cyclic settlement–rotation relations.

Fig. 11. Artificial Tsang-type motions and real records utilized as seismic excitations for the dynamic time history analyses, along with their acceleration response spectra.
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the predominant frequency of the seismic excitation ωp¼2π/Τp.
To make a strong point, the Lucerne(000) record from the 1992 MS

7.3 Landers earthquake is used as seismic excitation. Characterized
by a high frequency content, its predominant frequency ωp¼2π/
0.08¼78.5 rad/s, is much larger than ωn. The 3D FE model is used
as a yardstick to infer on the comparative efficiency of the two
assumptions. Fig. 12a compares the two different assumptions
with respect to ω, in terms of rotation time histories for a SDOF
system with FS¼3.3. When the initial natural frequency of the
rocking system ωn is used to compute the damping coefficient CR,
the simplified model captures the rotation time history with
remarkable accuracy. When the predominant frequency of the
seismic excitation ωp is used, the performance of the simplified
model becomes much worse. Note that the two different assump-
tions with respect to ω yield rotational damping coefficients
having a difference of the order of 5 (since ωp/ωnE5), and, hence,
the observed differences are quite reasonable. Evidently, the ωp

assumption leads to substantial underestimation of CR.
With respect to the assumption of the maximum value of the

normalized CR–θ curves, three alternatives are tested: (a) the pro-
posed maximum value of the normalized CR–θ curves, denoted
hereafter CR,max; (b) a somehow reduced value of 0.75CR,max; and
(c) a drastically reduced value of 0.25CR,max. Fig. 12b compares the
three different assumptions, in terms of rotation time histories for a
SDOF system with FS¼2.5 subjected to a moderate intensity seismic
record, from the 1986 MS 6 Kalamata (Greece) earthquake (keeping

the value of ω¼ωn constant). When considering 0.25CR,max, the
simplified model fails to reproduce the rotation time history of the
more rigorous 3D FE model: damping is considerably underesti-
mated, leading to unrealistic response. On the contrary, the discre-
pancies between the 0.75CR,max and CR,max assumptions are not that
pronounced, implying that the problem is not so sensitive to the
exact value of CR: if the order of magnitude is correct, the prediction
of the simplified model should be reasonably accurate. The optimum
result is obtained for CR,max, in which case the simplified model
captures the performance quite precisely.

7.2. Moderate seismic shaking

The performance of the simplified model is initially evaluated for
moderate intensity seismic motions. Two such examples are presented
in Fig. 13, referring to a system of height h¼4m, mass m¼75 Mgr,
and Fs¼2.5 subjected to an idealized artificial Tsang-type seismic
excitation, and the El Centro (180) record from the 1940MS 6.9 Imper-
ial Valley earthquake. Both seismic excitations contain multiple strong
motion cycles of moderate amplitude (0.3 g to 0.4 g), encompassing
the characteristics of far-field multi-cycle seismic motions.

The Tsang-type excitation is symmetric, containing a multitude
of strong motion cycles of amplitude aΕ¼0.4 g at predominant
frequency fΕ¼2 Hz. The numerical prediction of the simplified
model is compared to the more rigorous 3D FE model in terms of
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time histories of acceleration at the oscillator mass, foundation
rotation, and settlement, as well as moment–rotation (M–θ) loops
at the foundation level. As shown in Fig. 13a and b (left column),
the simplified model captures the acceleration and foundation
rotation time histories with remarkable accuracy: the predicted
time histories are practically identical to those of the 3D FE model.
It is worth noting that the maximum acceleration at the oscillator
mass is significantly lower than the peak acceleration of the
seismic excitation (aΕ¼0.4 g), revealing that the foundation has
reached its moment capacity, responding in the nonlinear range.
Due to the relatively low factor of safety FS¼2.5, extensive soil

yielding takes place underneath the foundation, limiting the inertia
transmitted onto the superstructure. As depicted in Fig. 13c (left
column), the estimation of the (normalized with B) dynamic
settlement using the previously described simplified procedure
(on the basis of the time history of θ, as predicted by the simplified
model) is equally successful. In terms of the M–θ loops (Fig. 13d),
the comparison is also acceptable, with the simplified model having
a tendency to overestimate the moment and the rotation, but
capturing the shape of the loop quite nicely. This difference is due
to the previously discussed approximations with respect to the
rotational dashpot.
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The El Centro (180) record is selected for two reasons: (i) having
a PGA¼0.31 g, and containing a multitude of strong motion cycles
of various frequencies, it may be considered representative of a
typical design earthquake, at least in terms of spectral acceleration
(see Fig. 11); and (ii) being a far-field record, it is not affected by
forward-rupture directivity effects, which tend to complicate the
response of strongly nonlinear systems, such as the one investi-
gated herein. As shown in Fig. 13a–c (right column), the simplified
model captures the acceleration, rotation, and settlement time
histories quite nicely. The latter cannot possibly be reproduced in
detail, as the simplified procedure does not account for the uplifting
during each half-cycle of loading. Finally, the comparison is also
quite successful in terms of M–θ loops (Fig. 13d). Observe that the

real record, despite having a lower PGA (0.31 g as opposed to 0.4 g
of the Tsang-type motion), leads to the development of larger
foundation rotation θ and increased soil inelasticity. On the other
hand, due to its multitude of strong motion cycles (of constant
amplitude aΕ¼0.4 g), the Tsang-type excitation produces substan-
tially larger dynamic settlement.

7.3. Strong seismic shaking

The efficiency of the simplified method is explored further,
focusing on strong (to very strong) seismic motions, during which
the response of the rocking system is expected to be highly
nonlinear. A characteristic example is presented in Fig. 14, utilizing

Fig. 14. Effectiveness of the simplified method for strong seismic shaking, using the Rinaldi (318) record as seismic excitation. Comparison of the numerical prediction of the
simplified model with the results of the rigorous 3D FE model, for two different factors of safety: FS¼5 (left column) and FS¼2 (right column). Time histories of:
(a) acceleration at the oscillator, (b) foundation rotation, and (c) foundation settlement; (d) moment–rotation (M–θ) loops at the foundation level.
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the Rinaldi (318) record from the 1994 MS 7.2 Northridge as
seismic excitation. The latter is a particularly destructive near-
field record, encompassing the effects of forward-rupture direc-
tivity. Two different factors of safety are investigated, one being
representative of (relatively) lightly-loaded systems, FS¼5 (left
column), and the other referring to more heavily-loaded systems,
FS¼2 (right column).

As evidenced by the acceleration time histories of Fig. 14a, the
Rinaldi record is, indeed, quite extreme for the lightly-loaded FS¼5
system. Observe the acceleration cut-off at roughly 0.24 g (corre-
sponding to the critical acceleration of the rocking system), which
is repeatedly of particularly long-duration. During each accelera-
tion “plateau”, the foundation reaches its moment capacity,
exhibiting strongly-nonlinear response. Limiting the inertia trans-
mitted to the superstructure, this acceleration cut-off is obviously
advantageous. As a result, however, the system is forced to
excessively large rotations of the order of 0.1 rad (Fig. 14b) –

almost an order of magnitude larger compared to the previous
cases. The simplified model captures correctly the acceleration
cut-off, being less accurate in terms of the details of the accelera-
tion time history. Interestingly, despite these discrepancies, the
rotation time history is predicted with impressive accuracy (minor
discrepancies can be observed only towards the end). Although
the footing develops large rotations, the residual rotation at the
end of shaking is practically negligible: an inherent self-centering
attribute of rocking systems, provided that the factor of safety
against vertical loading is adequately large (FsZ5 for clay), so as to
ensure uplifting-dominated response. As shown in Fig. 14c, the

residual settlement is slightly overestimated, being, however,
almost negligible thanks to the uplifting-dominated response of
the system. As previously discussed, the simplified approximate
settlement–rotation relations of Eq. (12) are conservative, espe-
cially for large Fs (see Fig. 9). Hence, this difference is quite natural.
Moreover, the upward displacement due to uplifting cannot
possibly be captured by the simplified method. Finally, the
comparison is excellent in terms of moment–rotation (M–θ) loops
(Fig. 14d).

In the case of the heavily-loaded FS¼2 system (right column of
Fig. 14), the discrepancies between the simplified and the 3D FE
model are far more pronounced. Although the simplified model
does capture the moment capacity of the system, as evidenced by
the acceleration cut-off in Fig. 14b, due to the very low FS excessive
plastic deformation takes place during strong seismic shaking
leading to the development of very large irrecoverable rotations
(Fig. 14b). As a result, the residual rotation θresE0.06 rad is not at
all negligible, and cannot possibly be captured by the simplified
model. Quite surprisingly, the total prediction of the dynamic
settlement is satisfactory (Fig. 14c). Although this might seem as a
paradox, it is quite easily explainable. With the exception of
rotation accumulation, the rotation time history is not poorly
predicted, at least with respect to the amplitude of individual
rotation half-cycles. Consequently, there is no reason for the
settlement not to be predicted correctly. The M–θ loops of
Fig. 14d confirm the yielding-dominated behavior of the system,
and the (natural and expected) inability of the simplified model to
capture the residual rotation. Most importantly, in this case the
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simplified model substantially overestimates the developing
moment. This is directly related to the linear dashpot, which is
connected in parallel with the nonlinear rotational spring. It is a
clear shortcoming of the simplified method, which is, however, of
importance for low factors of safety FS combined with very strong
directivity-affected seismic excitations. In such cases, the simpli-
fied model should be used with caution, as the error in predicting
the inertia loading of the system can be quite substantial. The
problem can be solved by connecting the spring in series, as
described by Wang et al. [60].

It should be emphasized, however, that the previous example is
actually a worst-case scenario, not being representative of the
overall performance of the simplified method. In general, even for
very low FS and seismic motions containing strong directivity
pulses, its performance is on average quite acceptable. Actually, in
the majority of the cases examined the accumulation of residual
rotation does not seem to affect the estimation of maximum
rotation, which is of prime significance for design purposes. One
such example is given in Fig. 15, referring to the same factors of
safety (FS¼5 and 2), but using as seismic excitation the Yarimca
(060) record from the 1999 MS 7.4 Kocaeli earthquake. The two
snapshots of deformed mesh with superimposed plastic strain
contours (computed with the more rigorous 3D FE model) at the
end of seismic shaking (Fig. 15a) show vividly the fundamental
difference in the response of the two systems. While for FS¼5 the
behavior is clearly uplifting-dominated, with plastic deformation
being localized within a very narrow zone underneath the foun-
dation, the performance of the FS¼2 system is characterized by
extensive soil plastification. As expected, for the lightly-loaded
(FS¼5) system the simplified method predicts the time history of
rotation quite accurately (Fig. 15b). But even for the heavily-loaded
(FS¼2) system, although the rotation time histories do not

perfectly match (due to the unavoidable accumulation of rotation),
the maximum value of θ is predicted quite successfully. As for the
previous example, the simplified method captures the settlement
with remarkable accuracy (Fig. 15c). Despite the above mentioned
problems, the simplified method seems to perform better for the
heavily-loaded system, overestimating the settlement of the
lightly-loaded one. This is directly associated to the conservatism
of the proposed Δw–θ relations (see Eq. (12)).

8. Synopsis and conclusions

This paper has introduced a simplified method to analyze the
seismic performance of rocking systems, taking account of soil
inelasticity and foundation uplifting. The soil–foundation system is
replaced by springs and dashpots. While the horizontal (KH and CH)
and vertical (KV and CV) springs and dashpots are assumed elastic,
directly obtained by published solutions [21], for the rotational
degree of freedom a nonlinear rotational spring is employed,
accompanied by a linear dashpot. Three relations are required, all
of them being a function of the factor of safety against vertical
loading FS: (a) the moment–rotation (M–θ) relation, (b) the damping
coefficient–rotation (CR–θ) relation, and (c) the dynamic settle-
ment–rotation (Δwdyn–θ) relation. Focusing on square shallow
foundations, the necessary relations are computed through 3D FE
analyses, applying a thoroughly validated constitutive model [4].

The effectiveness of the proposed simplified method has been
demonstrated through comparisons with 3D FE analyses. Fig. 16
summarizes the performance of the simplified method for all
seismic excitations examined, and for three different factors of
safety against vertical loading FS¼5, 3.3, and 2. The comparison is
performed in terms of maximum rotation θmax and dimensionless
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residual settlement wres/B, plotting the prediction of the simplified
model (vertical axis) against the corresponding results of the
rigorous 3D FE model (horizontal axis). At least for the cases
examined, the effectiveness of the simplified method is fully
confirmed. In terms of θmax (Fig. 16a), its effectiveness is quite
impressive for all factors of safety. The only substantial discre-
pancy is observed for the heavily-loaded (FS¼2) system subjected
to the directivity-affected Rinaldi record. This is related to the
inability of the simplified model to capture residual rotations – an
unavoidable shortcoming, which is, however, of importance
mainly for (unrealistically) low FS combined with very strong
seismic shaking with directivity-affected seismic excitations. The
residual settlement is accurately predicted for all cases examined
(Fig. 16b).

Although the proposed simplified method is based on several
simplifying approximations (some of them being, admittedly, quite
crude), it is considered as a valid alternative for the preliminary
design of rocking-isolated systems. Being easily implementable in
commercial FE codes, without requiring calibration of sophisticated
models and avoiding the need for time consuming 3D FE analyses,
it has the potential of being applied in practice in the near future.
The proposed procedure is simple and straightforward, not requiring
iterations to compute the response. Although this paper has focused
on square foundations, the same methodology can be employed for
other footing shapes (rectangular, circular, strip), or for embedded
foundations. Alternatively, the required relations can be produced
experimentally, on the basis of cyclic pushover tests (e.g., [40,18,5,6]).
Hence, the practicing engineer may directly apply the proposed
methodology utilizing the provided FE-derived relations, or select
from the literature other relations that may be considered more
appropriate.
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