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The response of surface foundations to large overturning moments is studied under undrained

conditions. Rigid circular, strip, and rectangular footings of various aspect ratios are considered, with

the soil modeled as an inelastic homogeneous deposit, characterized by an elastic (small-strain) shear

modulus Go, an undrained shear strength Su, and a G/Go versus c curve appropriate for medium-

plasticity clays. Three stages of foundation performance, ranging from the initial elastic fully-bonded

response, to the nearly-elastic but nonlinear response with the foundation partially detaching and

uplifting from the soil, and finally to the ultimate stage where full mobilization of soil bearing failure

mechanisms develop. Simple to use formulas or charts are developed for all stages of response in terms

of dimensionless parameters, prominent among which is the static factor of safety against bearing-

capacity failure under purely-vertical loading.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Research on seismic soil–structure interaction (SSI) over the
last decades has mostly relied on the assumption of linear (or at
most equivalent-linear) elastic soil behavior and fully bonded
contact between footing and soil (examples: [30,31,36,48,
49,52,54]). Seismic design of structure–foundation systems has
followed a somewhat parallel path: the still prevailing ‘‘capacity
design’’ philosophy allows substantial plastic deformation in the
superstructure but requires no significant yielding developed
below ground level. This requirement implies that:
�
 foundation elements (e.g. piles, footings, caissons) will remain
structurally elastic (or nearly elastic);

�
 bearing capacity soil failure mechanisms will not be

mobilized;

�
 sliding at the soil–foundation interface will not take place,

while the amount of foundation uplift will be limited to not
more than about half of the contact area.

However, seismic motions recorded in the last 20 years,
starting with the earthquakes of Northridge (1994) and Kobe
(1995), have revealed that very large ground and spectral accel-
eration levels can be experienced in near-fault zones. Seismic
loads transmitted onto shallow foundations in such cases will
most probably induce significant nonlinear inelastic action in the
soil and soil–foundation interface. Among the most spectacular
ll rights reserved.
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examples of strongly-nonlinear foundation response which led
to bearing capacity and uplifting failures of buildings are from
the city of Adapazari during the Kocaeli 1999 earthquake [17].
Although these failures had been initially attributed to soil liquefac-
tion, subsequent studies suggested the development of bearing
capacity failure mechanisms passing through the very soft silt as
the main culprit. The need for considering soil nonlinearity in
(re)designing foundations as part of a rehabilitation scheme has
long been recognized in normative documents (see FEMA [12]).
Thus, in the last 15 years or so numerous publications have dealt
with soil and foundation inelasticity [2–9,11–14,17–20,22,26,28,34,
35,37–39,42–46,51].

The scope of this paper is to present results for the nonlinear
static rocking stiffness of foundations having various plan shapes
(strip, square, circle, rectangle), supported on a uniform layer of
undrained clay (Fig. 1). Finite element analyses are performed to
this end. Both geometric nonlinearity (a consequence of detach-
ment of the footing from the soil), and material inelasticity (due
to declining soil modulus at strains exceeding about 0.01% and
eventually to soil failure, controlled by Su) are properly reflected
in the analyses. The results are given in the form of formulae and
graphs that can be readily (even if iteratively) used in equivalent
linear analyses and in displacement-based design.
2. Method of analysis

A series of two- and three-dimensional (2D, 3D) finite element
analyses have been performed using ABAQUS [1]. The soil is a
saturated homogeneous clay responding in undrained fashion
with a shear strength Su and maximum shear modulus Gmax. The
foundations. Soil Dynamics and Earthquake Engineering (2013),
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Fig. 1. The four geometries in plan and a (single) cross-section.
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Fig. 2. 3-D view of typical finite element mesh: square foundation.
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footing, of width B in the direction perpendicular to the axis of
rotation, is structurally absolutely rigid. Except for the special
case of plane strain (for which 4-noded plane strain elements are
used), the soil is modeled with 8-noded cubic elements, as shown
in Fig. 2. We have used fully integrated first-order isoparametric
elements, in which the volume changes at Gauss points are
replaced by the average volume change of the element. This
technique, also known as selective reduced-integration (because
the order of integration is reduced in selected terms), helps to
prevent mesh locking, providing accurate solutions in (nearly)
incompressible materials.

An advanced tensionless contact algorithm has been adopted
to simulate the potential separation and uplifting of the founda-
tion from the soil: interface elements allow the nodes to be in
contact (when closed) or separated (when open). To achieve a
reasonably stable time increment without jeopardizing the accu-
racy of the analysis, we modified the default hard contact
pressure–overclosure relationship of ABAQUS with a suitable
Please cite this article as: Gazetas G. Nonlinear rocking stiffness of
http://dx.doi.org/10.1016/j.soildyn.2012.12.011i
exponential relationship. A large coefficient of friction at the soil–
footing interface was chosen deliberately to prevent gross sliding of
the footing on the ground. This assumption was deemed necessary
in order to avoid ‘‘parasitic’’ sliding displacements, aiming to focus
on the rocking response of the foundation. It is certainly a simpli-
fication, which can be considered realistic for relatively slender
systems, where the response is rocking-dominated. In such cases,
even with a realistic friction coefficient, sliding would hardly take
place, as rocking could be the critical mechanism.

The location and type of lateral (and vertical) boundaries was
an important consideration. Under monotonic and cyclic static
loading these boundaries can be placed fairly close to the
foundation (just outside the ‘‘pressure bulb’’) and they can be of
any ‘‘elementary’’ type (from ‘‘free’’ to ‘‘fixed’’). Under dynamic
loading, however, waves emanating from the footing–soil inter-
face cannot propagate to infinity unless special transmitting
boundaries are placed at suitably large distances. ‘‘Elementary’’
boundaries may cause spurious reflections, thereby contaminat-
ing the wave field below the foundation and reducing or even
eliminating the radiation damping. For the rocking stiffness under
static conditions which are the focus of this paper, ‘‘elementary’’
boundaries are placed at a reasonably-large distance from the
foundation. In view of the fact that moment loading on the
surface of a homogeneous halfspace induces normal vertical
stresses which decay very rapidly in both the horizontal and the
vertical direction (‘‘pressure bulb’’ of limited extent: less than
one-half the width from the foundation edge, in either direction—

Gazetas [15]), the boundaries were placed in most cases at
distances of about 3B from the edges of the footing. (For the
plane-strain case, they were placed even farther away.)

For the total stress analysis under undrained conditions, soil
behavior is modeled through a nonlinear constitutive model [4],
which is a slight modification of a model incorporated in ABAQUS.
It uses the Von Mises failure criterion, with yield stress sy related
to the undrained shear strength, Su, as sy ¼

ffiffiffi
3
p

Su along with a
nonlinear kinematic and isotropic hardening law, and an associa-
tive plastic flow rule. The numerical model employed herein has
been validated against centrifuge and large scale physical model
tests in [4]. More specifically, the ‘‘TRISEE’’ experiments were
used to validate the model for the case of a spread footing resting
on sand (not discussed herein), while centrifuge model tests
conducted at UC Davis [18] were utilized for the case of clay.
The latter refer to a rectangular foundation having a factor of
safety against vertical loading FS¼2.6, resting on a fairly homo-
genous layer of San Francisco Bay mud. The model was shown to
capture the moment–rotation (M–W) loops of the experiment (for
cyclic pushover testing) for the entire range of response, from
foundations. Soil Dynamics and Earthquake Engineering (2013),
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quasi-elastic (i.e., at very small rotations), to nonlinear, and to the
ultimate capacity. The numerical prediction was shown to be
accurate both in terms of footing moment capacity, and with
respect to the accumulated settlement during cyclic loading.

In this study, model parameters are calibrated to fit published
G: c curves of Vucetic and Dobry [53] for a plasticity index, PI¼30.
More details on the calibration procedure can be found in [4]. The
performance of the numerical model was verified once more
(errors less than 5%) by comparing the computed static ultimate
vertical force, Nuo, for a strip against the classical analytical
solution of Prandlt (see later). Furthermore, the initial practically-
elastic rotational stiffness, KR,elastic, of the footing (before the
initiation of uplifting or soil yielding) was about 10% higher than
the analytical solution.
3. Dimensionless parameters and nomenclature

A key objective of the paper is to develop solutions for the
‘‘effective’’ stiffness in rocking of arbitrarily-shaped foundations.
In the realm of large strains we will define as ‘‘effective’’ stiffness
of the M–W response:

KR ¼M=! ð1Þ

KR depends not only on the shear modulus G, the (pertinent)
footing width to the third power B3 (or R3), and the Poisson’s ratio
v, but also on the value of the undrained shear strength Su, and
most significantly on the angle of rotation W. In turn, the
(effective) shear modulus G is a function of Go (modulus at
vanishingly small shear strains, c) and the way C�G/Go decreases
with increasing c. Invoking the Vaschy–Buckingham P-theorem
of dimensional analysis, the following dimensionless expression
can be written:

KR

KR,elastic
¼ f !,

Nuo

N
, C c
� �

,
Go

Su

� �
ð2Þ

As will be shown below, the ‘‘rigidity-index’’ Go/Su plays a
rather small role for the KR ratio. Moreover only one C(c) (i.e. one
G/Go versus c) curve is utilized in this paper. Since the factor of
safety against vertical loading FS¼Nuo/Nu, it can be stated that:

KR ¼KR !, FS

� �
ð3aÞ

The purely elastic stiffness is thus denoted as:

KR, elastic �KR 0,1ð Þ ð3bÞ

At vanishingly small angles of rotation the stiffness decreases
with decreasing FS (increased soil yielding) and thus we will have

KR ¼KR 0, FSð ÞoKR 0,1ð Þ ð3cÞ

while, eventually, at larger angles of rotation:

KR ¼KR !, FS

� �
oKR 0, FSð Þ ð3dÞ

We will express:

KR !, FS

� �
¼KR 0, FSð Þvð!Þ ¼KR, elasticc FSð Þvð!Þ ð4Þ
4. Elastic stiffness

At very small angles of rotation !, linear elasticity describes
soil behavior while tension can be sustained at the underside of
the foundation (thanks to the vertical superimposed load).
Closed-form expressions for the moment–rotation ratios (stiff-
nesses), KR,elastic, of surface footings are available in the literature
Please cite this article as: Gazetas G. Nonlinear rocking stiffness of
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for a variety of shapes [10,16,31,36,48,49,52,54] as follows (refer-
ring to the case of pure moment):
�

fou
Strip footing of width B¼2b (per unit length):

KR, elastic ¼
p
2

G b2

1�m
ð5Þ
�
 Circular footing of radius R:

KR, elastic ¼
8

3

G R3

1�m
ð6Þ
�
 Square footing of side B¼2b:

KR, elastic ¼ 3:65
G b3

1�m
ð7Þ
�
 Rectangular footing of width B¼2b (normal to the x direction)
and length L¼2l (normal to the y direction). Rotation about the
x axis (as in Fig. 1):
If BoL:

KR, elastic ¼ 0:62
G b3

1�m
1þ5 l=b
� �

ð8Þ

If BZL (as is the rectangle studied here):

KR, elastic ¼ 3:72
G b3

1�m
l=b
� �0:60

ð9Þ

It is worthy to note that using numerical (e.g., finite-element)
discretization to derive these stiffnesses would most likely lead to
differences of up to 10–20%, depending on the type and size of the
finite elements, and on the treatment of the interface (frictionless,
versus perfectly adhesive, versus Coulomb-frictional).
5. Ultimate (plastic) response

At somewhat larger values of !, soil response becomes non-
linear once shear strains, c, exceed a threshold (of the order of
0.02%) that is a function mainly of the clay plasticity index
[29,53]. Thereafter, with further increasing ! the footing behavior
depends strongly on the available factor of safety (FS), defined as
the ratio Nuo/Nu, where Nuo¼the bearing capacity under purely
vertical static loading, and Nu¼the applied vertical load.

The ultimate moment resistance to foundation rotation is a
function of the vertical (normal) force and the horizontal (shear)
force, acting on the foundation. It has become popular to predict
undrained ultimate limit states under a general combination of N,
Q, M explicitly and to represent the collapse loads as a failure
envelope in the 3-dimensional Nu, Qu, Mu coordinate system.
Whereas rigorous limit analysis solutions are available only for
strip and circular foundations, the finite element method has
been used successfully to produce ultimate states for rectangular
shapes [6,21,23–25,27,41,47,50]. An important finding of research
published in the last five years is that the shape of the failure
envelope is independent of the footing shape [24,25]. In our
particular case, where no lateral displacement is allowed to
develop and hence the arising shear force is negligibly small
(although not exactly zero, due to a ‘‘parasitic’’ rotation–shear
coupling), the failure envelope in Mu, Nu coordinates is a parabola.
For rectangular (in plan) footings, of width B and length L,
Gourvenec [24] has shown that when the Nu and Mu axes are
normalized by Nuo and Nuo B, respectively, a unique failure
ndations. Soil Dynamics and Earthquake Engineering (2013),
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for the examined foundation geometries: (a) strip, (b) square, (c) rectangular (3:1),
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envelope is obtained, independent of the aspect ratio, B/L, where
BoL. The Gourvenec envelope is given in Fig. 4.

We obtained the failure envelopes under combined vertical
and moment loading, i.e., in Mu, Nu space, using a finite-element
discretization such as that of Fig. 2 for four foundation shapes: the
strip (B/ L¼0) and square (B/ L¼1) which were also part of the
Gourvenec unique envelope, but also the circle (radius R) and a
narrow rectangle of B/ L¼3 (typical of foundations of shear walls).
Note that in this paper B is always the width of the side normal to
the axis of rotation (i.e. the width of the most significant side)—in
this case x.

The (Mu, Nu) failure envelopes for the above four footing
shapes (strip, square, circle, elongated rectangle) are portrayed
Please cite this article as: Gazetas G. Nonlinear rocking stiffness of
http://dx.doi.org/10.1016/j.soildyn.2012.12.011i
in Fig. 3. The abscissa is invariably Nu/Nuo. The ordinate is Mu/Su

AB, where A is the soil–footing contact area and B is the width of
the footing side normal to the axis of rotation. Of all the problem
parameters that were investigated only the ‘‘rigidity’’ index, Go/Su,
seems to have some effect on the peak values of the normalized
failure envelope. As Go/Su changes from 800 to 200 the max Mu

decreases by 10%—a rather insignificant effect which will be
neglected in the sequel.

An alternative normalization of the ultimate moment, Mu, is
achieved by dividing it by Nuo B. The following Nuo analytical–
experimental established expressions [24,25,41,47,50] have been
utilized:
�

founda
Strip (B, N), per unit length,

Nuo ¼ pþ2ð ÞSuB ð10Þ
�
 Square (B, B)

Nuo � pþ3ð ÞSuB2
ð11Þ
�
 Circle (D¼2R)

Nuo ¼ 6:05 Su p D2
ð12Þ
�
 Rectangle (B, 3B)

Nuo � 1:065 pþ2ð ÞSuð3B2
Þ ð13Þ
The results of this new normalization fall within a very narrow
band, defining the unique parabola:
Mu=NuoB� 0:55 Nu=NuoÞ 12Nu=Nuo

� ��
ð14Þ

which exceeds by just 10% the classical results of Meyerhof
[41]. (See also Gourvenec [24].). Interestingly, the largest moment
capacity, MuE0.14 NuB is somewhat higher than the classical
Mu¼0.125 NuoB, achieved for Nu/Nuo¼0.5, i.e. when the static
factor of safety against vertical bearing capacity failure, FS¼Nuo/
Nu¼2. The performance of the FE models is considered satisfac-
tory, as the difference with the classical solution (i.e., the error) is
of the order of 10%.
6. Nonlinear stiffness

If soil exhibited linearly-elastic ideally-plastic behavior, the
above solutions based on elasticity and plasticity would be
sufficient to describe the monotonic response of the foundation.
Soil nonlinearity, however, develops well before the foundation–
soil system reaches its ultimate moment capacity Mu. A conve-
nient popular way of displaying such nonlinearity is with the
shear-modulus and damping versus shear–strain curves, such as
the ones from Vucetic and Dobry [53] and Ishibashi and Zhang
[29]. In fact, two phenomena take place before the ultimate
capacity is reached:
�
 soil nonlinearities first appear at relatively small strain levels,
c, of the order of 10�4;

�
 detachment from the soil and hence uplifting of the edge of

the footing takes place, as no attraction can develop between
the two media in contact.

It turns out that lightly loaded foundations, with FS¼Nuo/N well
in excess of 2, experience partial uplifting from the supporting
ground before any substantial nonlinearity develops in the soil.
In contrast, heavily loaded foundations, with FS of about 2 or less, will
tions. Soil Dynamics and Earthquake Engineering (2013),
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exhibit the opposite trend: development of strongly inelastic soil
response with subsequent minor uplifting, or even no uplifting at all.
Eventually, heavily and lightly loaded foundations will mobilize
failure mechanisms in the soil, and thereafter the moment–rotation
curve will reach its plateau. (Reference is made to [2–4,7–9,13,14,17,
26,35,42,45,46,51] for additional information.)

Fig. 5 illustrates the different failure mechanisms at incipient
collapse (i.e., just before overturning) of a footing subjected to
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displacement-controlled monotonic pushover loading, while car-
rying three different vertical loads N¼NuoNuo. The correspond-
ing three vertical factors of safety are: FS¼20 (very-lightly loaded
foundation, or very hard soil), FS¼2 (rather heavily-loaded
foundation, or moderately-stiff soil); and FS¼1.2 (severely-loaded
foundation, or quite soft soil). The three snapshots (all at incipient
collapse) show vividly that as FS decreases the extent of uplifting
diminishes, but soil inelasticity increases. The extent (in both
vertical and horizontal direction) of the failure zone increases
substantially with a reduction in FS, approaching the extent of
failure under purely vertical loading.

Fig. 5 (top) illustrates the phases of foundation response in
terms of moment–rotation ratio for the three types of foundation
vertical loading: FSE1.25, 2.0, and 20. Notice that despite the
largest elastic stiffness of the FS¼20 footing, its ultimate moment
capacity is the smallest. This should not surprise the reader: as
can be seen in Fig. 4, as FS-N, i.e. Nu/Nuo-0, Mu tends to vanish
due to the inability of the tensionless interface to sustain any
moment in the absence of vertical load. A convenient way of
utilizing results such as those of Fig. 5 is by obtaining the secant
modulus as a function of the amplitude of the angle of rotation,
for each value of FS.
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Fig. 6 (a–d) present the KR curves for each of the four
foundation plans (circle, strip, square, 3:1 rectangle, respectively).
KR has been normalized by the corresponding KR,elastic value from
Eqs. (5)–(7),(9). Two trends are worthy of note: (i) that the initial
value of the ratio decreases with decreasing FS—an obvious
consequence of the unavoidable nonlinearities in the soil stem-
ming from the increasingly-‘‘heavy’’ vertical loading; and (ii) the
rate of decrease of KR with increasing amplitude of rotation is
higher for the footings with the higher FS—a result of the
dominant role of uplifting in the case of lightly-loaded footings.

Motivated by the success of the normalization for the ultimate
MuNu envelope, we have come by trial and error to the following
normalization of the axes of the above KR–! diagrams. The
objective was to derive results that, for each value of FS, would
be nearly unique for all footing shapes. By ‘‘nearly unique’’ we
mean that the results fall within a relatively narrow band, and
thus could be generalized and used in practice with any
foundation shape.

Specifically, KR is divided by KR (0, FS) instead of by KR, elastic.
Using the values of the diagrams in Fig. 6 and defining

w¼w FSð Þ ¼KR 0,FSð Þ=KR, elastic ð15Þ

the following simple expression of w as a function of the N/Nuo

ratio is fitted to the data:

w� 120:8=FS ð16Þ

The angle of rotation ! is normalized by a characteristic value,
!S, the expression of which (developed below) is motivated by the
angle which initiates separation and uplifting of the footing
corner from the soil: !uplift. Specifically:
(a)
Pl
ht
For a footing of any shape on a rigid base, the overturning
moment initiating uplift is simply:

Muplift, R ¼
N B

2
ð17Þ

where B is the width in the direction of rocking.

(b)
 For rocking of a strip or rectangle on elastic halfspace:

Muplift, H �
N B

4
ð18Þ

and therefore,

!uplift, H �
N B

4 KR, elastic
ð19Þ

Interestingly, for an elastic Winkler base (i.e., assuming a
linear distribution of stresses underneath the footing), the
moment at incipient uplift reduces to NB/6 instead of NB/4
(i.e., 1.5 times less than on a halfspace).
(c)
 For a circular foundation of diameter D¼2R on elastic half-
space:

!uplift, H �
N D

5:7 KR, elastic
ð20Þ

As in the previous case, assuming a linear distribution of
stresses underneath the footing, the moment at incipient
uplift is NB/8 (i.e., roughly 1.5 times less than on a halfspace).
(d)
 For very heavily-loaded footings where the initial foundation
settlement is substantial and the soil is already in a state of
extensive widespread yielding (‘‘plastification’’), the angle of
uplifting initiation is larger. Eventually, for small enough FS,
uplifting is hardly discernible in the M–! curves.
As previously mentioned, the initial rotational stiffness KR (0, FS)
is a decreasing function of FS (Eq. (16)). The decrease of FS leads to
ease cite this article as: Gazetas G. Nonlinear rocking stiffness of
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increased soil yielding underneath the foundation (under purely
vertical loading), i.e. even before application of moment loading.
Hence, it is reasonable to assume that the uplift rotation will
actually be a function of KR (0, FS) instead of KR, elastic. Focusing on
rectangular foundations, and combining Eq. (19) with Eq. (16), a
‘‘characteristic’’ rotation angle !S (the equivalent of the uplift
rotation for inelastic soil) can be defined and used as the normal-
ization parameter:

!S ¼
N B

4 KR,elastic w FSð Þ
1�0:22 1�

1

FS

� �2 B

L

� �0:2
" #

ð21Þ

While the first part of the expression is quite straightforward,
its second part was determined heuristically (i.e., by trial and
error) so that the results would fall within a relatively narrow
band for all foundation shapes examined. Of course, simplicity to
the extent possible was also an objective of this exercise.
Especially for circular foundations, it is simply considered a reason-
able simplification.

Indeed, with the above normalizations of the two axes [i.e.,
with KR(0, FS) and !S, respectively] the results of Fig. 6 ‘‘collapse’’
to the nearly-unique curves (for each FS value) plotted in Fig. 7.
The deviation from the mean value for each FS is rather insignif-
icant, so that one could safely use these curves for any (reason-
able) foundation shape (ranging from a circle to a rectangle).
More complicated foundations, such as H-shaped, L-shaped,
C-shaped, have not been investigated.

It is therefore proposed that such curves, along with the
associated expressions presented in this paper, be used in prelimin-
ary equivalent-linear analyses of soil–foundation systems.
7. Example application: natural period of rocking oscillator

The system shown in Fig. 8 is a rigid 1–dof oscillator (i.e., having
a fixed-base period equal to zero) of mass m at a height h, supported
on stiff clay, with Su¼150 kPa, Go¼90 MPa, and n¼0.49.

Because of the relatively large slenderness ratio h/B¼2 (or h/b¼4,
for the equivalent rigid block) rocking of the foundation will be the
foundations. Soil Dynamics and Earthquake Engineering (2013),
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Fig. 8. Example problem definition : rigid oscillator of height h¼4 m lying on a

rigid B¼2b¼2 m square (or equivalent strip) foundation on compliant nonlinear

clayey soil of Su¼150 kPa and Go¼100 Mpa.
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dominant mode of vibration. The system is in essence an inverted
pendulum. Within the simplification of the equivalent linearization,
neglecting any horizontal displacement of the footing, but accounting
Please cite this article as: Gazetas G. Nonlinear rocking stiffness of
http://dx.doi.org/10.1016/j.soildyn.2012.12.011i
for P–D effects, the differential equation of free vibrations at not very
large angles ! becomes:

m h2
� �

€!þ KR2mghð Þ!� 0 ð22Þ

Tn � 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m h2

KR�mgh

s
ð23Þ

where KR¼KR (!, FS). Thus, for each value of ! and of FS¼Nuo/mg,
a unique value of KR is obtained. Nuo is given by one of the
Eqs. (10)–(13).

Figs. 9 and 10 portray (for a strip and a square footing) the
natural period of the oscillator Tn (!, FS) as a function of !, for five
different factors of safety FS. The graphs at the bottom of each
figure show in detail the initial part of the Tn (!, FS) curves (for
!o0.02, which is considered as a reasonable range for typical
building structures). Several trends are noteworthy:
�

fou
The initial period (at !¼0) can be written as:

Tn 0,FSð Þ � 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nuo h2

FS g KR,elastic w FSð Þ

s
ð24Þ
ndations. Soil Dynamics and Earthquake Engineering (2013),

http://dx.doi.org/10.1016/j.soildyn.2012.12.011
http://dx.doi.org/10.1016/j.soildyn.2012.12.011
http://dx.doi.org/10.1016/j.soildyn.2012.12.011


G. Gazetas et al. / Soil Dynamics and Earthquake Engineering ] (]]]]) ]]]–]]]8

P
h

As clearly seen in the enlarged bottom graphs of the two
figures, and as it would be intuitively expected, Tnð0,FSÞ

decreases with the increase of FS. For the specific example
and the FS values considered, the periods Tnð0,FSÞ vary
between 0.2 and 0.7 s for both footings. Quite interestingly,
the shape of the footing seems to play a truly minor role.

�
 At relative small values of ! (o0.05 rad), Tn increases with !

almost at a constant or slightly decreasing rate. But thereafter,
Tn increases exponentially, approaching asymptotically infi-
nity at W¼Wc, the critical angle for overturning collapse.

�
 This large increase in the natural period of oscillation Tn is one

of the main causes of the beneficial role played by geometric
nonlinearity and material inelasticity in reducing the distress
of the superstructure during strong seismic shaking—an idea
which has been under intensive investigation in recent years
[3,4,8,14,17–20,26,32–35,38,40,46].

�
 For large values of FS, !c is a purely geometric parameter:

Wc � arctan
b

h
�

b

h
ð25Þ

In this specific example, !cE0.245. And !c decreases with
decreasing values of FS, i.e., as yielding in the soil becomes
increasingly prevalent. The values of !c for all factors of safety
FS are obtained from Figs. 9 and 10.
8. Conclusion

Formulas and charts have been developed in a general dimen-
sionless format which will allow easy computation of the
nonlinear effective rotational stiffness of foundations of any
(reasonable) shape. These results despite their numerical origin,
are based on some assumptions (such as the homogeneous clay
under undrained conditions) that may only crudely approximate
reality. Furthermore the concept of equivalent linear analysis is
only a crude approximation at conditions near failure. Despite
these clearly admitted simplifications, the results presented
herein would be useful for design purposes—a step forward
compared to current practice of design on the basis of elastic
stiffnesses.
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