
This article was downloaded by: [National Technial University of Athens]
On: 18 September 2012, At: 02:00
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Earthquake Engineering
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/ueqe20

Dimensional Analysis of SDOF Systems
Rocking on Inelastic Soil
R. Kourkoulis a , I. Anastasopoulos a , F. Gelagoti a & P. Kokkali a
a School of Civil Engineering, National Technical University, Athens,
Greece

Version of record first published: 14 Sep 2012.

To cite this article: R. Kourkoulis, I. Anastasopoulos, F. Gelagoti & P. Kokkali (2012): Dimensional
Analysis of SDOF Systems Rocking on Inelastic Soil, Journal of Earthquake Engineering, 16:7, 995-1022

To link to this article:  http://dx.doi.org/10.1080/13632469.2012.691615

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation
that the contents will be complete or accurate or up to date. The accuracy of any
instructions, formulae, and drug doses should be independently verified with primary
sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand, or costs or damages whatsoever or howsoever caused arising directly or
indirectly in connection with or arising out of the use of this material.

http://www.tandfonline.com/loi/ueqe20
http://dx.doi.org/10.1080/13632469.2012.691615
http://www.tandfonline.com/page/terms-and-conditions


Journal of Earthquake Engineering, 16:995–1022, 2012
Copyright © A. S. Elnashai & N. N. Ambraseys
ISSN: 1363-2469 print / 1559-808X online
DOI: 10.1080/13632469.2012.691615

Dimensional Analysis of SDOF Systems
Rocking on Inelastic Soil

R. KOURKOULIS, I. ANASTASOPOULOS, F. GELAGOTI,
and P. KOKKALI

School of Civil Engineering, National Technical University of Athens, Athens,
Greece

Aiming to derive results of generalized applicability and provide a generalization framework for
future research on the subject, this article performs a dimensional analysis of SDOF systems rock-
ing on compliant soil, taking account of soil inelasticity, foundation uplifting, and P–δ effects. The
effectiveness of the proposed formulation, under static and dynamic conditions, is verified through
numerical analyses of self-similar “equivalent” systems. Then, a parametric study is conducted to
gain further insights on the key factors affecting the performance, with emphasis on metaplastic
ductility and toppling rotation. It is shown that P–δ effects may lead to a substantial reduction
of (monotonic) moment capacity, especially in the case of slender and heavily loaded structures.
Interestingly, this reduction in moment capacity is compensated (to some extent) by an overstrength
that develops during cyclic loading. Asymmetric (near-field) seismic excitations tend to produce
larger maximum and permanent rotation, compared to symmetric multi-cycle (far-field) excitations,
which are critical in terms of settlement. The dimensionless toppling rotation ϑult/ϑc (where ϑc is
the toppling rotation of the equivalent rigid block) is shown to be a function of the factor of safety
against vertical loads FSv and the slenderness ratio h/B. In the case of lightly loaded systems (FSv

→ ∞), soil plastification is limited and the metaplastic response approaches that of the equivalent
rigid block : ϑult/ϑc → 1. The toppling rotation ϑult/ϑc is shown to decrease with FSv : ϑult/ϑc →
0 for FSv → 1. The role of the h/B becomes increasingly important when the response is governed
by soil nonlinearity (FSv → 1). Finally, an approximate simplified “empirical” equation is proposed,
correlating ϑult/ϑc with h/B and FSv.

Keywords Dimensional Analysis; SDOF Systems; Soil-Structure Interaction; Toppling Rotation;
Ductility

1. Introduction

Over the past 30 years, extensive research has been conducted to derive deeper understand-
ing on the role of soil–foundation–structure interaction (SFSI) on the seismic performance
of structures (e.g., Jennings and Bielak, 1973; Veletsos and Nair, 1975; Kausel and Roesset,
1975; Gazetas, 1983; Tassoulas, 1984; Wong and Luco, 1985; Gazetas, 1991; Gazetas and
Mylonakis, 1998). Soil was typically modeled as an idealized visco-elastic material, assum-
ing that the foundation maintains full contact with the supporting soil. Although such an
assumption may have appeared reasonable, especially in view of seismic code provisions
requiring “elastic” foundation response, recent strong earthquakes have shown that inelastic
soil-foundation response may be inevitable. In fact, while for many years the strong motion
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996 R. Kourkoulis et al.

records from the devastating earthquakes of Northridge (1994) and Kobe (1995), with
recorded PGA of the order of 1 g (0.98 g and 0.85 g, respectively) and PGV of the order
of 150 cm/s, were believed to constitute the worst-case scenario, the recent March 11,
2011 Mw9.0 Tohoku-oki “mega” earthquake in Japan showed rather dramatically that even
stronger acceleration levels of the order of 3 g are possible [Aoi et al., 2011; Furumura
et al., 2011]. Most importantly, perhaps, relatively small magnitude seismic episodes may
also produce excessively large acceleration levels: the 2004 Mw6.0 Parkfield earthquake is
one such example, where the maximum recorded PGA reached 1.8 g accompanied by a
PGV of roughly 100 cm/s [Shakal et al., 2006].

Apparently, under such severe seismic shaking the assumption of elastic soil-
foundation response cannot be considered realistic. However, recent research suggests that
soil–foundation nonlinear response may be beneficial and should be seriously considered
in analysis and design (e.g., Paolucci, 1997; Gazetas et al., 2003; Pecker, 2003; Gajan
et al., 2005; Mergos and Kawashima, 2007; Pender; 2007; Harden and Hutchinson, 2006;
Gajan and Kutter, 2008). Nonlinear foundation behavior may materialize either in the form
of sliding or uplifting of the foundation from the supporting soil when the seismic iner-
tia exceeds its overturning moment capacity, or may involve mobilization of soil bearing
capacity. In any of these cases, the finite capacity of the foundation may act as “seismic
isolation,” limiting the inertia forces transmitted to the above ground system, and hence
reducing the dynamic stressing of the superstructure.

To this end, an urgent need is arising to explicitly account for nonlinear SFSI in mod-
ern seismic design. Instead of imposing “safe” limits on forces and moments acting on
the foundation (as entrenched by current seismic code provisions), the foundation may
be designed following performance-based criteria: nonlinear foundation response could be
allowed during strong seismic shaking, while ensuring that the developed displacements
and rotations will not pose a risk to the structural integrity of the superstructure. So far, a
great amount of research has been conducted on the nonlinear response of shallow foun-
dations, comprising experimental (e.g. Ticof, 1977; Maugeri et al., 2000; Knappett et al.,
2004; Gajan et al., 2005; Bienen et al., 2007; Paolucci et al., 2008; Gajan and Kutter, 2008)
and analytical studies, including : (i) finite element (FE) or boundary element approaches,
in which both the structure and the foundation soil are modeled together in one single sys-
tem through an assemblage of finite elements (e.g. Butterfield and Gottardi, 1994; Bransby
and Randolph, 1998; Ukritchon et al., 1998; Martin and Houlsby, 2001; Gourvenec and
Randolph, 2003; Gazetas and Aposolou, 2004; Gourvenec, 2007); (ii) rigorous plasticity-
based macro-element formulations (e.g., Nova and Montrasio, 1991; Paolucci, 1997; Le
Pape and Sieffert, 2001; Crémer et al., 2001; Chatzigogos et al., 2009); and (iii) Winkler-
based approaches, where the soil is replaced by a series of distributed nonlinear springs and
dashpots (e.g., Houlsby et al., 2005; Allotey and El Naggar, 2003; 2007; Raychowdhury
and Hutchinson, 2009).

While most of the above studies have focused on nonlinear soil-foundation response,
unavoidably drawing relatively little attention to the realistic simulation of the superstruc-
ture (typically represented by combined M-Q-N loading, or assumed elastic if included
in the analysis or in the experiment), recent attempts have been made to model the entire
soil–foundation–structure system giving equal attention to the nonlinear behavior of all
its components, and the role of geometric nonlinearities (P-δ effects) in determining the
“metaplastic” phase of response (i.e., the performance of the system long after reach-
ing its capacity, until complete failure – toppling). Some of these studies include: (a) FE
analysis and shaking table testing of idealized bridge piers [Anastasopoulos et al., 2010;
Anastasopoulos, 2010]; and (b) centrifuge model testing [Kutter and Wilson, 2006; Chang
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Rocking of SDOF Systems: Dimensional Analysis 997

et al., 2006] and FE analysis [Gelagoti et al., 2011; Gelagoti et al., 2012; Kourkoulis et al.,
2011] of low-rise frame structures.

Aiming to derive results of generalized applicability and to provide a generalization
framework for future research on the subject, this article performs a formal dimensional
analysis of a single degree of freedom (SDOF) system rocking on compliant soil, account-
ing for fully inelastic soil response and taking account of geometric nonlinearities (i.e.,
foundation uplifting and second order effects). The derived formulation is then utilized to
shed light on the effect of key factors governing the rocking behavior of SDOF systems
rocking on nonlinear soil, such as the slenderness ratio and the factor of safety against ver-
tical (static) loads. The former has been proven to determine the uplifting potential of the
system, while the latter defines the mechanism that governs inelastic foundation response
(i.e., uplifting or soil yielding).

2. Dimensional Analysis

Dimensional analysis is a mathematical tool that emerges from the existence of physical
similarity and reveals the relationships that govern natural phenomena [Langhaar, 1951].
Through dimensional analysis, it is feasible to derive results of generalized applicability
and gain deeper understanding of key problem parameters [Makris and Black, 2004a,b;
Makris and Psychogios, 2006; Palmeri and Makris, 2008; Karavasilis et al., 2010; Makris
and Vassiliou, 2010; Pitilakis and Makris, 2010]. In this article, dimensional analysis is
employed to study the static and dynamic response of SDOF systems rocking on inelastic
soil (Fig. 1). A typical example of such a system (representative of a bridge pier) is por-
trayed in Fig. 1a, referring to a “lollipop” structure of height h carrying a concentrated
superstructure mass m. The oscillator has a fundamental period Tstr (assuming fixed-base
conditions) and lies on a surface foundation of width B on a clayey soil deposit of depth z,
undrained shear strength Su, shear wave velocity Vs, and density ρ. In the ensuing, a rigor-
ous formulation of the dimensionless terms pertaining to the problem under consideration
is attempted, commencing from the simplest case of a rigid block rocking on rigid base,
and gradually introducing the additional parameters upon it.

For the simplest case of a rigid block of width B = 2b (where b is the half width of
the foundation) and height H = 2h lying on a rigid base (Fig. 1b), the rocking behavior is a
function of its geometry, typically expressed through the slenderness ratio α = tan−1(B/2h)
[Yim et al., 1980; Makris and Roussos, 2000; Vassiliou and Makris, 2011], and the char-
acteristics of the input seismic excitation which, in case of idealized seismic motions (such
as sinusoidal or Ricker pulses), can be described solely through the amplitude aE and its
characteristic frequency fE [Zhang and Makris, 2001]. Hence, the rotation of the rigid body
ϑ may be expressed as:

ϑ = f (B, h, g, aE, fE). (1)

According to the Vaschy-Buckingham �-theorem, a dimensionally homogeneous equation
involving k variables may be transformed to a function of k|n dimensionless �-products,
where n is the minimum number of reference dimensions necessary for the description of
the physical variables.

Applying the �-theorem on Eq. (1), which contains k = 6 independent variables
involving n = 2 reference dimensions, obviously results in 4 dimensionless �-products.
In this context, Eq. (1) may be rearranged in dimensionless terms so that:
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Problem Definition : 
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FIGURE 1 Problem definition: (a) SDOF system lying on a square foundation on com-
pliant nonlinear clayey soil under undrained conditions; and (b) equivalent rigid block on
rigid base approximation.

ϑ = f (B/h, fE/p, aE/g), (2)

where

p =
√

3g
/

4R (3)

is a frequency parameter [Housner, 1964], which is indicative of the dynamic characteristics
of the rigid block, playing a crucial role for its rocking response and overturning potential.
In Eq. (3), R is the half-diameter of the block:

R =
√

(B/2)2 + h2. (4)

To render Eq. (1) applicable to the general case of a SDOF system rocking on inelastic
soil (Fig. 1a), the characteristics of the soil and the superstructure need to be taken into
account. This is accomplished by introducing in the equation the fundamental period of
the soil and the structure, Tsoil and Tstr, respectively, and the soil strength, expressed
(for the problem investigated herein) through the undrained shear strength Su. Lastly, in
order to account for kinematic soil response and wave propagation effects, Eq. (1) should
also include the depth z, density ρ, and shear wave velocity Vs of the clayey soil layer.
Incorporating all of the above in Eq. (1) yields:

ϑ = f (B, h, g, aE, fE, Tstr, m, Su, z, ρ, Vs) (5)

which apparently contains k = 12 independent variables involving n = 3 reference dimen-
sions (i.e., length, mass, and time). Following the same principles as before, Eq. (5) is
re-written in non dimensional terms:
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Rocking of SDOF Systems: Dimensional Analysis 999

ϑ = f

(
h

B
,

aE

g
,

fE
p

, pTstr,
Vs

pz
,

mg

SuB2
,

ρV2
s

Su
,

Su

ρzaE

)
. (6)

The parameter mg
/

SuB2 is directly proportional to the ratio x = N/Nult of the static
vertical load N of the superstructure to the bearing capacity Nult = (π + 3) SuB2 of the
square foundation (i.e., the inverse of the factor of safety against vertical loads FSv); in
the sequel, it will be referred to as 1/FSv or x = N/Nult. The flexibility of the oscillator is
expressed through the oscillator flexibility parameter pTstr. Accordingly, soil nonlinearity
is expressed through the term r = Su

/
ρz αE, in which Su is the available undrained shear

strength, and ρzαE is an index of the earthquake-induced stress at depth z. In other words, r
may be considered as an index of the mobilization of soil shear strength due to the imposed

acceleration αE . Finally, the factor v = ρV2
s
/
Su

termed “rigidity ratio” in soil mechanics
literature, is the ratio of the soil shear modulus (at small strains) over the undrained shear
strength. Evidently, at least in its present form, this dimensional analysis is not capable
of capturing the effect of excitation type (i.e., number of strong motion cycles, kinematic
characteristics, etc.) as it only integrates the peak amplitude αEand characteristic frequency
fEof seismic shaking.

According to the presented formulation, the dimensionless settlement and moment of
the foundation may be expressed as:

w

B
= f

(
pt,

h

B
,

1

FSv
, pTstr,

ρV2
s

Su
,

Su

ρzaE
,

Vs

pz
,

aE

g
,

fE
p

)
(7)

M

SuB3
= f

(
ϑ

ϑc
,

h

B
,

1

FSv
, pTstr,

ρV2
s

Su
,

Su

ρzaE
,

Vs

pz
,

aE

g
,

fE
p

)
(8)

Table 1 summarizes the independent variables and the dimensionless products of the
dimensional analysis for dynamic and static loading.

The ultimate goal of the dimensional analysis presented herein is the production of
self-similar results, obeying a special type of symmetry, which is invariant to size (or scale)
transformations. In the sequel, the self similarity in the response of example SDOF systems
is investigated, by means of nonlinear finite element (FE) analysis, to verify the presented
formulation.

TABLE 1 1-DOF systems on surface square foundations subjected to rocking due to static
or dynamic loading: Identification of dimensionless �-products

Independent variables

h B m Tstr ρ Su Vs z

Dimensionless products

Aspect ratio
h

B
Rigidity ratio

ρVZ
s

Su

Factor of safety FSv Relative frequency
Vs

pz

Oscillator flexibility parameter pTStr Acceleration amplitude
αE

g

Soil strength mobilization index
Su

ρzαE
Frequency parameter

JE

p
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1000 R. Kourkoulis et al.

Seismic excitation : vertically propagating SVwaves

Soil :

nonlinear quadrilateral 

plane strain elements

Soil–Footing

interface

Superstructure :

elastic beam elements

Mass element 

Free-field boundaries

FIGURE 2 Finite element model assuming plane-strain conditions and taking account of
material (soil) and geometric nonlinearities (foundation uplifting and P–δ effects).

3. Numerical Analysis Methodology

The FE method is employed in the ensuing in order to confirm the effectiveness of
the dimensional formulation and to perform parametric analyses on the effect of each
dimensionless term in the rocking behavior of SDOF systems. As depicted in Fig. 2,
a “characteristic” slice of the soil–foundation–structure system is modeled considering
plane-strain conditions and taking account of material (soil) and geometric (uplifting and
P-δ effects) nonlinearities. Quadrilateral continuum elements are used for the soil and the
foundation, while the superstructure is modeled with beam elements and a concentrated
mass element. The foundation–soil interface is modeled with special contact elements,
permitting detachment from the supporting soil.

“Free-field” boundaries, materialized through appropriate kinematic constraints, are
used at the two lateral boundaries of the model. It is noted that even elementary lateral
boundaries placed at an adequately large distance (of the order of 10B) from the footing,
would be sufficient for the problem investigated herein, since only a negligible amount of
radiation damping is generated thanks to:

(a) the dominant rocking mode, due to “destructive interference” of the out-of-phase
emitted waves from the two half-sides of the footing [Kausel, 1974];

(b) the fact that the fundamental shear-wave period, Tsoil, of the soil layer is signifi-
cantly lower than both the dominant period (TE) of the earthquake and the natural
period (Tstr) of the superstructure [Kausel, 1974] — especially in view of the fact
that the latter increases substantially with uplifting.

(c) the mobilization of the soil yielding and the formation of failure surfaces create a
soft zone under the footing, which reflects the incident waves [Borja et al., 1994].

3.1. Soil Modeling

Soil behavior is modeled through a nonlinear kinematic hardening model, with Von Mises
failure criterion and associated flow rule [Anastasopoulos et al., 2011]. The evolution law
of the model consists of two components: a nonlinear kinematic hardening component,
which describes the translation of the yield surface in the stress space (defined through the
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FIGURE 3 Soil Constitutive model: example of model predicted shear stress – shear strain
(τ–γ ) loop for a single soil element (of undrained shear strength Su = 50 kPa) subjected to
cyclic simple shear loading of gradually increasing amplitude.

“backstress” parameter β), and an isotropic hardening component, which defines the size
of the yield surface σ oas a function of plastic deformation. The pressure-independent yield
surface of the model according to the Von Mises failure criterion is defined through the
following function F:

F = f (σ − β) − σ0. (9)

Calibration of model parameters requires knowledge of: (a) soil undrained shear strength
Su; (b) small-strain stiffness (expressed through Go or Vs); and (c) stiffness degradation (G–
γ and ξ−γ curves). Figure 3 plots an example of model predicted shear stress–shear strain
(τ–γ ) loop for a single soil element (of undrained shear strength Su = 50 kPa) subjected to
cyclic simple loading of gradually increasing amplitude. More details on model calibration
and comparisons of model predictions in terms of G–γ and ξ–γ curves against published
experimental data can be found in Anastasopoulos et al. [2011b].

The model is subjected to static and dynamic time-history analysis. In the first case,
three different loading types are applied: (i) vertical “push-down” analysis (to estimate the
bearing capacity of the foundation); (ii) displacement-controlled monotonic pushover anal-
ysis; and (iii) displacement-controlled cyclic pushover analysis. In the latter case (dynamic
analysis), the seismic excitation (idealized wavelets and real records), is imposed at the
base of the model.

3.2. Equivalence between 2D and 3D FE Models

As previously discussed, a two-dimensional (2D) analysis is conducted, considering a rep-
resentative “equivalent slice” of the soil−foundation–structure system. In order to achieve
equivalence between the 2D and the square 3D problem, the Meyerhof [1963] and Vesic
[1973] bearing capacity shape factor of 1.2 (for a square foundation) is applied to the out
of plane dimension of the soil “slice,” following the methodology proposed by Gelagoti
et al. [2011]. As will be shown in the sequel, this procedure is quite effective in capturing
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(a) Rigorous 3D Simulation  
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FIGURE 4 Comparison of: (a) rigorous 3D numerical simulation with (b) “equivalent”
2D analysis (deformed meshes with superimposed plastic strain contours). Illustration of
equivalence in terms of: (c) moment–rotation (M–ϑ) response and (d) settlement–rotation
(w–ϑ) response of a square B = 1.7 m footing founded on Su = 50 kPa medium-soft clay
(color figure available online).

the nonlinear response of the foundation, but less accurate in terms of the elastic (i.e., small
strain) stiffness of the foundation.

In order to demonstrate the validity of this procedure, two FE models were developed
to simulate the response of a SDOF system subjected to cyclic pushover loading: a rigorous
3D model (Fig. 4a), and an equivalent 2D model (Fig. 4b). The specific example refers to
a system carrying a superstructure dead load N = 150 kN, founded on a square B = 1.7 m
footing on Su = 50 kPa medium-soft clay. Figures 4c and d compare the two models in
terms of moment−rotation (M−ϑ) and settlement−rotation (w−ϑ) foundation response.
It is shown that, overall, the equivalent 2D approach reproduces the key aspects of the 3D
problem quite effectively, and is hence adopted for the subsequent parametric analyses.

3.3. Validation of FE Analysis Methodology

The FE analysis methodology technique employed herein has been validated
[Anastasopoulos et al., 2011] against centrifuge model tests conducted at UC Davis [Kutter
et al., 2003; Gajan et al., 2005]. One such comparison is portrayed in Fig. 5, referring to a
SDOF system founded on a rectangular foundation, having FSv = 2.6, on layer of remolded
San Francisco Bay mud (consolidated on top of a dense sand layer). The tests were con-
ducted at 20 g centrifugal acceleration, applying displacement in packets of increasing
amplitude (each containing three cycles of constant amplitude). The comparison shown
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FIGURE 5 Validation of FE analysis and soil constitutive model against UC Davis cen-
trifuge model tests [Kutter et al., 2003] – cyclic loading of a rectangular foundation having
FSv = 2.6, resting on remolded San Francisco Bay mud (third loading packet). Comparison
of FE analysis with experimental results in terms of: (a) moment–rotation (M–ϑ) and (b)
settlement–rotation (w–ϑ) response.

herein refers to the third packet of loading, of maximum rotation amplitude ϑ ≈ 0.06 rad.
The model predicts correctly the ultimate moment capacity of the footing Mult ≈ 300 kNm
(Fig. 5a), and the accumulation of permanent settlement underneath the footing (Fig. 5b).
The non symmetric behaviour (different Mult for the two loading directions), possibly asso-
ciated to some experimental asymmetry or soil inhomogeneity, cannot possibly be captured
by the numerical simulation. The hysteresis loops reveal highly nonlinear response, charac-
terized be excessive soil plastification. Although the total settlement is accurately predicted,
as evidenced by the shape of the M–ϑ loops energy dissipation is under-predicted by the
model, being associated with an under-prediction of foundation uplifting.

The model is further validated herein against published failure envelopes for sur-
face foundations subjected to combined M-Q-N loading [Butterfield and Gottardi, 1994;
Paolluci and Pecker, 1997; Gourvenec, 2007]. One such comparison against the failure
envelopes of Gourvenec [2007] is portrayed in Fig. 6, referring to an h/B = 2 SDOF sys-
tem ignoring P–δ effects (to produce compatible results). The plot presents the normalized
foundation moment capacity Mult/Mmax (where Mult is the ultimate capacity of the foun-
dation for the specific vertical load, and Mmax is the maximum ultimate moment capacity)
as a function of the normalized vertical load x = N/Nult (= 1/FSv). This quite satisfactory
comparison reveals the validity of the equivalent 2D analysis methodology. Ignoring P–δ

effects, the moment capacity of the foundation is maximized for a critical value of x = 0.5
(i.e., for a safety factor against vertical loads FSv = 2).
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FIGURE 6 Comparison of equivalent 2D FE analysis with the published failure envelope
of Gourvenec [2007] for an h/B = 2 SDOF system subjected to combined M-Q-N loading,
ignoring P–δ effects: normalized moment capacity Mult/Mmax as a function.
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FIGURE 7 Example problem: two unique systems may display a self-similar response as
long as they share common dimensionless properties [case study: h/B = 2, FSV = 2.5,
pTstr = 0.4, ρVS

2 / Su = 690, VS /pz = 14.3].

4. Effectiveness of the Dimensional Formulation

In an attempt to demonstrate the effectiveness of the dimensional analysis described above,
this section compares the response of the two “equivalent” SDOF systems of Fig. 7, first
subjected to monotonic pushover loading (static analysis), and then to strong seismic shak-
ing (dynamic time-history analysis). System A refers to an h/B = 2 structure carrying
a mass m = 1200 Mgr, founded on a B = 7 m footing on Su = 150 kPa soil of depth
z = 25 m. System B refers to an equivalent structure, founded on a B’ = 3.5 m footing on
S’u = 75 kPa soil of depth z = 12.5 m. Since the FSv of the two systems must be equal, the
mass of System B is calculated as m’ = m/8 = 150 Mgr (since Nult is proportional to B3).
Apparently, the slenderness ratio h/B = 2 is common for both systems. Proper adjustment
of the shear wave velocity of System B, allows the two systems to share the same soil stiff-
ness ratio ρV2

s

/
Su = 690. The parameter pTstr that reflects the flexibility of the oscillators
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Rocking of SDOF Systems: Dimensional Analysis 1005

is equal to 0.34, while the parameter Vs
/

pz, which is indicative of the relative frequency of
the soil-superstructure system, is equal to 14.3.

4.1. Static Pushover Loading

The moment-rotation response of the two systems subjected to static pushover loading
is depicted in Fig. 8. As expected, in absolute terms (Fig. 8a) the moment capacity Mult

of the two systems is substantially different. The equivalent rigid block of each system
represents the upper-bound, both in terms of moment capacity and toppling rotation ϑult.
In both cases, soil compliance reduces the moment capacity but has a minimal effect on
the toppling rotation. Observe that the latter (i.e., ϑult) is the same for the two systems,
since both share the same slenderness ratio h/B = 2 (or H/B = 4 in terms of the equivalent
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FIGURE 8 Effectiveness of dimensional formulation for static pushover loading. (a)
Moment–rotation (M–ϑ) response of the two equivalent systems. The response of the fully
nonlinear system is compared to the case of elastic soil, and to the equivalent rigid block on
rigid base. (b) Comparison of the two systems in terms of dimensionless moment–rotation
response.
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1006 R. Kourkoulis et al.

rigid block). Accounting for soil inelasticity leads to a substantial reduction of Mult and
ϑult for both systems. All the above discrepancies fade away once the results are plotted in
non dimensional terms (Fig. 8b), confirming the effectiveness of the presented dimensional
formulation for static loading. The latter has been confirmed through analyses of various
equivalent systems subjected to monotonic and cyclic loading, not shown herein for the
sake of brevity.

4.2. Dynamic Loading: Seismic Shaking

The equivalence of the two systems subjected to seismic shaking has been verified through
nonlinear dynamic time history analyses, using as seismic excitation idealized (Ricker and
sinusoidal) pulses and an ensemble of 18 strong motion records (see Gelagoti et al., 2011),
covering a wide range of seismic scenarios. An example comparison is depicted in Fig. 9,
which refers to the nonlinear dynamic time history analysis of the two systems, apply-
ing as seismic excitation the Takatori (000) accelerogram, which was recorded during the
devastating 1995 Kobe earthquake. This record constitutes a rather devastating seismic
excitation, characterized by forward rupture directivity effects, large number of strong
motion cycles, and PGV of the order of 150 cm/s. It is used to test the effectiveness of
the dimensional formulation under extremely nonlinear conditions.

Quite remarkably, the comparison is excellent both in terms of dimensionless accel-
eration and settlement time histories, and with respect to dimensionless moment–rotation
loops. The dimensionless acceleration time histories at the oscillator mass (Fig. 9a) are
practically identical, exhibiting exactly the same dimensionless frequency content. Observe
that the maximum acceleration at the oscillator mass is significantly lower than the peak
acceleration of the seismic excitation, revealing that the foundations of both systems
reached their moment capacity. Extensive soil yielding underneath the footing takes place
in both cases, resulting in limiting the inertia transmitted onto the superstructure. The lat-
ter is due to the low FSv = 2.5 of the two equivalent systems, which produces substantial
accumulation of settlement during each loading cycle (Fig. 9b). Despite such extensive
soil yielding, the dimensionless settlement time histories of the two systems are prac-
tically identical. Minor discrepancies are observed when comparing the dimensionless
moment-rotation loops of the two equivalent systems (Fig. 9c).

In summary, the presented dimensional formulation facilitates the derivation of results
of generalized validity for the fully nonlinear problem under static and dynamic loading
taking account of soil inelasticity, uplifting, and second-order effects. It is emphasized that
the presented formulation is equally successful for the entire range of response: from quasi-
elastic conditions (i.e., for very small imposed rotation) until toppling.

5. Parametric Analysis and Further Insights

The following sections investigate the effect of key dimensionless parameters on the
rocking response of SDOF systems rocking on inelastic soil. Exploiting the proposed
dimensional formulation, parametric analysis results are presented in dimensionless terms,
thus corresponding to a “family” of equivalent systems rather than individual cases.

5.1. The Effect of Static Safety Factor FSV

Two pairs of equivalent systems are examined (Table 2), both of aspect ratio h/B = 2. The
first pair has a factor of safety against vertical loads FSv = 2, thus representing heavily
loaded systems, whereas the second pair has FSv = 5, being representative of relatively
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FIGURE 9 Effectiveness of dimensional formulation for strong seismic shaking – non-
linear dynamic time history analysis applying as seismic excitation the Takatori record
(Kobe 1955). Dimensionless time histories of: (a) acceleration at the oscillator mass; (b)
foundation settlement; and (c) dimensionless moment–rotation loops at the foundation
level.

lightly loaded systems. Since the dimensionless response of each pair of systems is iden-
tical, in the ensuing they will be referred to as heavily loaded and lightly loaded systems.
The two systems are subjected to monotonic and cyclic pushover loading (static analysis),
and their performance is comparatively assessed in Fig. 10.

Not surprisingly, FSv plays a key role in the rocking response of the two systems.
As evidenced by the plastic strain contours of Fig. 10a (monotonic pushover loading), in the
case of the heavily loaded system (FSv = 2) extensive soil plastification takes place under-
neath the footing, leading to mobilization of a bearing capacity failure mechanism. In effect,
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1008 R. Kourkoulis et al.

TABLE 2 Independent variables and dimensionless products of two pairs of equivalent
systems utilized to illustrate the effect of FSV. With the exception of FSV, all dimensionless
terms are kept constant. In all cases examined, the superstructure is assumed rigid
(Tstr → ∞)

Heavily loaded systems Lightly loaded systems
Independent
variables System A System B System A System B

h (m) 14 7 14 7
B (m) 7 3.5 7 3.5
m (Mg) 281 562 38 76 112.5 225 15 30
E (kPa) 90000 180000 45000 90000 90000 180000 45000 90000
Su (kPa) 75 150 37.5 75 75 150 37.5 75

Dimensionless products
h/B 2 2
FSV 2 5
E/Su 1200 1200

the foundation rotates around pole O ′, which is shifted to the left of its initial position O (at
the center of the footing), i.e., translating opposite to the direction of the imposed rotation.
In stark contrast, in the case of the lightly loaded system (FSv = 5), rocking is materialized
mainly through uplifting, being accompanied by very limited soil plastification, localized
underneath the very edge of the footing. Due to the observed uplifting, the effective width
of the foundation decreases substantially, and the rotation pole gradually shifts towards the
right edge of the footing (O′′).

The dimensionless monotonic moment-rotation response of the two systems is
depicted in Fig. 10b. In accord with experimental and analytical findings and published
failure envelopes (e.g., Gourvenec, 2007), the heavily loaded FSV = 2 system exhibits
greater dimensionless moment capacity compared to the lightly loaded FSV = 5 system.
Moreover, as evidenced by the initial inclination of the moment-rotation curve, the “elas-
tic” (small strain) rocking stiffness of the two systems is quite different: the heavily loaded
system is characterized by a substantially lower initial stiffness, as a result of initial soil
plastification due to the vertical load only. The lightly loaded system topples at a much
larger rotation (ϑult/ϑc ≈ 0.9) compared to the heavily loaded system (ϑult/ϑc ≈ 0.6), a
behavior that conspicuously reflects the increasingly detrimental role of P-δ effects with
decreasing FSv (as explained in detail in the sequel).

The performance of the two systems subjected to cyclic loading of increasing ampli-
tude is summarized in Figs. 10c and d, in terms of dimensionless moment–rotation and
settlement–rotation response, respectively (the static backbone curve is also plotted for
ease of reference). The shape of the moment-rotation loops of the two systems is quite
different: in the case of the heavily loaded FSV = 2 system, the moment-rotation loops
are “rounded,” contrary to the FSV = 5 system where (at least for large imposed rotation)
the loops tend to become “S-shaped,” which is indicative of uplifting-dominated response.
Interestingly, in this latter case (FSV = 5) the cyclic response is enveloped by the monotonic
backbone curve (grey line), while for the heavily loaded system the cyclic moment capac-
ity tends to exceed the monotonic backbone curve: a palpable indication of overstrength.
This remarkable feature is probably attributable to soil hardening during repeated cycles
of loading, in combination with the role of P–δ effects, as explained in Panagiotidou et al.
[2012]. In the case of lightly loaded systems (having large FSV), the rocking response is
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FIGURE 10 Illustration of the effect of FSv. Comparison of two pairs of equivalent
systems subjected to monotonic and cyclic pushover loading, varying only FSv: (a)
deformed mesh with plastic strain contours; (b) dimensionless monotonic moment–rotation
response; (c) cyclic dimensionless moment–rotation response; and (d) cyclic dimensionless
settlement–rotation response [the grey line corresponds to the monotonic backbone
curves].

clearly uplifting-dominated without substantial soil yielding taking place, and the moment
capacity is rather a geometric property (almost equals that of the equivalent rigid block,
mgB/2) leading to the complete absence of such phenomena. This interesting outcome is
corroborated by recent experimental studies (e.g., Anastasopoulos et al., 2011).

The qualitatively different response of the two systems is once more evident in terms
of dimensionless cyclic settlement-rotation response (Fig. 10d): while the heavily loaded
(FSV = 2) system exhibits a sinking-dominated response, accumulating substantial perma-
nent settlement, the lightly loaded (FSV = 5) system tends to uplift, thus developing minor
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1010 R. Kourkoulis et al.

residual settlement. Noticeably, although the imposed cyclic displacement (at the top of
the oscillator) is equal for both systems, the developing rotation is substantially larger for
the FSV = 5 uplifting-dominated system compared to the heavily loaded FSv = 2 system.
In the former case, the entire imposed displacement is acquired through footing rotation
which, in the latter case, is limited due to excessive soil yielding: a substantial portion of
the imposed lateral displacement is transformed to horizontal translation at the base of the
footing.

5.2. The Role of P–δ effects

Second order P–δ effects are quite invariably neglected in foundation seismic design. The
above ground system is typically “represented” by one or more M-Q-N load combinations,
based on the static analysis of the superstructure. In the previous section, a first indication
of the role of P–δ effects was discussed, shown to be beneficial in terms of the overstrength
observed during cyclic loading. However, P–δ effects are not always beneficial. In fact, as it
will be shown in the sequel, their role may be detrimental and, hence, neglecting them may
lead to unconservative design. To better illustrate such effects, the monotonic pushover
response of two pairs of SDOF systems is examined, one referring to a relatively short
h/B = 1 system and the other to a slender h/B = 4 structure. Both systems are analyzed
for a variety of superstructure loads, to cover the entire range of x = N/Nult (= 1/FSv). The
characteristics of the self-similar systems analyzed herein are outlined in Table 3. As in the
previous section, since the dimensionless response of each pair of systems is identical, in
the ensuing they will be referred to as short and slender systems.

The results are summarized in Fig. 11, focusing on the dimensionless failure envelopes
of the two systems, ignoring or accounting for P–δ effects. Apparently, P–δ effects are
always detrimental in terms of monotonic moment capacity. As shown in Fig. 11a, their
effect is minimal for short structures (h/B = 1), leading to a maximum decrease of the
moment capacity of the order of 5% (observed at x = N/Nult = 0.6). In the case of such
short structures, the governing failure mechanism tends to be in the form of horizontal
translation rather than rotation (i.e., shear failure being critical rather than moment), leading
to the observed insensitivity to P–δ effects. In contrast, as the slenderness of the structure

TABLE 3 Independent variables and dimensionless products of two pairs of equivalent
systems utilized to illustrate the role of P–δ effects. Two pairs of systems are analyzed,
a relatively short system with h/B = 1, and a slender system of h/B = 4. In all cases
examined, the superstructure is assumed rigid (Tstr → ∞ )

Independent
variables Short system Slender system

h 1.75 3.5 14 7
B 1.75 3.5 3.5 1.75
m varies parametrically varies parametrically
E 45000 90000 90000 180000 45000 90000 90000 180000
Su 37.5 75 75 150 37.5 75 75 150

Dimensionless products
h/B 1 4
X 0.05 ÷ 0.95 0.05 ÷ 0.95
E/Su 1200 1200
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FIGURE 11 Illustration of the role of P–δ effects. Monotonic moment capacity with
respect to the dimensionless vertical load x = N/Nult for a pair of equivalent systems:
(a) relatively short h/B = 1 system, and (b) slender h/b = 4 system; (c) schematic expla-
nation of the governing mechanisms for the slender h/B = 4 system: deformed mesh with
superimposed plastic strain contours at the instant of maximum moment for a lightly loaded
(x = 0.1) and a heavily loaded (x = 0.8) system.

increases (h/B = 4), moment becomes the foremost determining factor, and the role of
P–δ effects becomes rather pronounced (Fig. 11b). The moment capacity of the system
decreases by 20–50% for a wide range of dimensionless load (0.3 < x < 0.8). Observe
that as x = N/Nult tends to zero (and, hence, FSv also tends to 1) this decrease in moment
capacity due to second-order effects tends to increase even more, exceeding 70%. However,
it should be noted that for more realistic values of x < 0.3 (i.e., FSv > 3.5) the decrease of
moment capacity due to P–δ effects is not that pronounced (i.e., less than 15 %).

A qualitatively explanation of the above is offered by Fig. 11c, which illustrates
the plastic strain contours that develop within the soil for the case of the slender
h/B = 4 system, for two different values of dimensionless vertical load: x = N/Nult = 0.1,
corresponding to a lightly loaded system, and x = 0.8, being representative of a heavily
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1012 R. Kourkoulis et al.

loaded structure. Both FE snapshots correspond to the rotation at which the maximum foun-
dation moment is attained. In the case of the lightly loaded system (left figure, x = 0.1),
the failure mechanism is governed by uplifting, not involving substantial soil plastification
underneath the footing. As previously discussed, due to such absence of soil plastifica-
tion, the initial rocking stiffness is close to the elastic and, hence, the moment capacity
is attained at a relatively small rotation. As a result, requiring rotation to develop, P–δ

effects cannot possibly play an important role. On the contrary, low FSv systems tend to
procure extensive soil yielding underneath them which, in turn, brings about shifting of
the pole of rotation away from the center of the footing. Therefore, the moment produced
by the superstructure self-weight immediately tends to disturb the system’s equilibrium
under even low-amplitude rotation. With increasing rotation, the P–δ induced moment is
augmented, accelerating the degradation of the moment capacity of the footing.

In summary, P–δ effects may lead to a substantial reduction of the monotonic moment
capacity of slender systems, provided that the structure is heavily loaded (x > 0.3). Quite
interestingly, it is exactly in this case where a substantial cyclic overstrength is observed,
also related to P–δ effects. It could be argued that the same mechanism is largely respon-
sible for both phenomena. In fact, it seems that the detrimental role of P–δ effects in
monotonic loading is reversed when cyclic loading is considered (in terms of the observed
overstrength). As a result, the cyclic moment capacity of such systems may very well be
very close to the monotonic capacity, ignoring P–δ effects.

5.3. The Role of Seismic Excitation Type

One of the key objectives of the presented dimensional formulation was to obtain self-
similar systems, exhibiting equivalent response when subjected to equivalent dynamic
loading (i.e., to the same seismic excitation type, properly adjusted in terms of frequency).
The primary scope of this section is to highlight the decisive role of excitation type on the
dynamic performance of the soil–foundation–structure system.

To this end, two self-similar systems of FSV = 2.5 and h/B = 2 are excited by two
entirely different idealized seismic motions, sharing the same dimensionless peak acceler-
ation αE/g = 0.6 and dominant frequency fE/p = 4.68 (Fig. 12): (i) a Ricker pulse and (ii) a
modified Tsang-type motion. The first is a clearly asymmetric excitation, containing a sin-
gle coherent large amplitude pulse, accompanied by two smaller amplitude pulses. Despite
its simplicity, this mathematical wavelet bears a strong forward-rupture directivity imprint,
and thus it has been extensively utilized in seismological studies, to represent near-field
seismic motions [Abrahamson, 2000; Mavroeidis and Papageorgiou, 2003; Garini et al.,
2011]. On the other hand, the modified Tsang-type excitation is symmetric, encompassing
a multitude of strong motion pulses that embodies the characteristics of far-field multi-cycle
seismic motions.

The comparison is once more performed in terms of dimensionless settlement time
histories, and dimensionless settlement–rotation and moment–rotation curves (Fig. 12).
Naturally, since the Tsang-type excitation includes multiple strong motion cycles, con-
siderable settlement is accumulated, leading to a permanent settlement almost seven times
larger than for the Ricker pulse (Fig. 12a). However, as revealed by the moment-rotation
plots of Fig. 12b, owing to the inherent symmetry of the Tsang-type excitation, such
excessive settlement is not combined with permanent foundation rotation. This is cer-
tainly not the case when the system is subjected to the “asymmetric” Ricker excitation.
The main pulse generates excessive unilateral soil yielding (i.e., only on the one side
of the foundation), provoking a large-magnitude rotation that may not be recovered dur-
ing the subsequent lower intensity pulse. Interestingly, although both motions boast the
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FIGURE 12 Illustration of the effect of excitation type. Nonlinear dynamic analysis of
a pair of self similar SDOF systems (FSV = 2.5, h/B = 2, Su/ρzαE = 6.25), excited by
two distinctly different idealized seismic motions: a Ricker wavelet (left column) and a
modified Tsang-type motion (right column), sharing the same dimensionless acceleration
(αE/g = 0.6) and frequency (fE/p = 4.68): (a) dimensionless settlement time histories, (b)
dimensionless moment–rotation, and (c) settlement–rotation response.

same dimensionless acceleration and frequency, the Ricker pulse generates substantially
larger maximum rotation ϑmax/ ϑc ≈ 0.04 (compared to less than 0.01 of the Tsang-type
excitation).

A plausible explanation is that the Ricker wavelet practically consists of a unique
major pulse, immediately generating a significant permanent rotation. On the contrary, the
Tsang-type motion consists of a sequence of pulses of the same amplitude, smoothly trail-
ing one another. The produced rotation inevitably follows the same smooth pattern: the
rotation acquired during one pulse must be first recovered during the following cycle, and
therefore although the Tsang-type excitation boasts the same acceleration amplitude as
the Ricker excitation, the developed maximum rotation never actually approaches that of
the latter.

The symmetry and monochromatic nature of the Tsang-type excitation is also con-
sidered responsible for the observed differences in moment-rotation response (Fig. 12c):
although the moment capacity is reached with both excitation types, the moment-rotation
loops of the Ricker excitation are much wider, indicating strongly nonlinear foundation
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1014 R. Kourkoulis et al.

response, something which is not that evident in the case of the multi-cycle Tsang-type
excitation.

Further parametric analysis is conducted, using the same idealized seismic motions
scaled, but varying the dimensionless acceleration and dominant frequency. The first, αE/g,
is varied from 0.1–1.0 to explore the effects of the mobilized soil nonlinearity. The lat-
ter, fE/p, is parametrically varied from 2.34–4.68, to highlight the role of dimensionless
excitation frequency. Figure 13 summarizes the results of the conducted parametric study
(referring to h/B = 2 systems of x = 0.4, i.e., FSv = 2.5), in terms of dimensionless residual
and maximum foundation rotation and permanent shaking-induced settlement, with respect
to αE/g and fE/p.

As expected, all performance measures worsen with the increase of dimensionless
acceleration αE/g. In accordance with the previous discussion, Ricker excitations tend
to produce larger rotations, with the multi-cycle Tsang-type motions being critical in
terms of permanent settlement. The excitation type clearly plays a major role with
respect to the dimensionless maximum rotation (Fig. 13a). Even more important is the

α
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FIGURE 13 Summary of nonlinear dynamic analysis results, referring to self-similar
systems of h/B = 2 and FSV = 2.5, excited by idealized Ricker and Tsang-type exci-
tations. Performance assessment with respect to dimensionless acceleration αE/g and
dominant frequency fE/p. Dimensionless: (a) maximum rotation, (b) residual rotation, and
(c) settlement.
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Rocking of SDOF Systems: Dimensional Analysis 1015

role of the dimensionless frequency, with the relatively long-period Ricker wavelet of
fE/p = 2.34 producing 6 times larger ϑmax/ϑc compared to its high-frequency counterpart
of fE/p = 4.68. The differences are less pronounced when referring to the perma-
nent dimensionless rotation ϑ res/ϑc, but the main trends remain unaltered (Fig. 13b).
As expected, the Tsang-type excitation produces substantially larger dimensionless per-
manent settlement w/B compared to the Ricker pulse of the same frequency content (Fig.
13c). The dimensionless excitation frequency exhibits the same effect: w/B increases with
the decrease of fE/p.

6. Toppling Rotation and Metaplastic Ductility

As previously discussed, a variety of failure envelopes is readily available in the liter-
ature for surface foundation subjected to combine M-Q-N loading. On the contrary, the
“metaplastic” phase of response (i.e., after the ultimate capacity is reached, until toppling)
has seldom been given the same attention. As a result, while the strength (i.e., their moment
capacity) of rocking systems can be considered to be well known, their ductility is not
documented to the same extent. Following the conventional definition of ductility, for a
rocking system (assuming elastic superstructure response) it can be defined on the basis of
foundation rotation:

μR = ϑult/ϑy, (10)

where ϑult is the toppling rotation and ϑy the “yield” rotation. While the exact definition of
ϑy may be more related to a convention rather than a physical interpretation, ϑult represents
the absolute limit of the metaplastic response: it signifies the toppling of the system. While
the toppling rotation of a rigid block rocking on a rigid base is well known, ϑc = tan−1(b/h)
≈ b/h, such claim cannot be supported for SDOF systems rocking on inelastic soil.

Hence, exploiting the dimensionless formulation and the key insights of the previously
presented parametric analysis, this section attempts to quantify the toppling rotation ϑult

(which can be used to estimate the ductility μR) of foundation–structure systems rocking
on compliant inelastic soil. Based on the already presented results, ϑult is a function of the
h/B ratio and the normalized vertical load x = N/Nult = 1/FSv . A parametric analysis is
conducted herein, for h/B ranging from 1–10 (i.e., from short to very slender systems),
and covering the entire range of x. Following the structure of the previous sections, ϑult

is normalized to the toppling rotation ϑc of the equivalent rigid block on rigid base. The
latter (ϑc) is reasonably considered as the upper-bound, and hence when ϑult/ϑc tends to
1 the foundation response is considered to be the most favorable as it approaches the ideal
case of rigid block on rigid base. On the other hand, smaller values of ϑult/ϑc suggest poor
metaplastic response due to excessive soil yielding.

Figure 14a summarizes the results of the parametric study, plotting ϑult/ϑc as a func-
tion of the slenderness ratio h/B and the normalized vertical load x = N/Nult. Evidently, for
x → 0 (i.e., for very large factor of safety FSv → ∞), ϑult/ϑc → 1: due to the extremely
light loading acting on the foundation, soil plastification is limited and the response of the
system approaches that of the equivalent rigid block. In marked contrast, for x = N/Nult →
1 (i.e., for very small FSv → 1), ϑult/ϑc → 0. In this case, the foundation is very heavily
loaded, with extensive soil plastification taking place before application of the overturning
moment (since FSv → 1). Consequently, even the slightest imposed rotation leads to top-
pling failure, long before the equivalent rigid block. As expected, ϑult/ϑc is also affected
by the h/B ratio, the role of which becomes increasingly important as x → 1, i.e., when the

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l T
ec

hn
ia

l U
ni

ve
rs

ity
 o

f 
A

th
en

s]
 a

t 0
2:

00
 1

8 
Se

pt
em

be
r 

20
12

 



1016 R. Kourkoulis et al.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

(b)

x = N/N
ult

≈ 0.8

(a)

0.88

h/B ∞

(c)

ϑ
ult

ϑ
c

ϑ
ult

ϑ
c

h/B =

2

4

10

1

h/B = 

2

4

10

1

1

10

Numerical analysis results

Simplified equation

0.53

≈ 0.6

h/B = 10

h/B = 1

(b)

FIGURE 14 Toppling rotation as a function of normalized vertical load x = N/Nult

and slenderness ratio h/B: (a) “rigorous” numerical analysis results, compared to (b)
proposed simplified approximation. (c) Snapshots of deformed mesh with superimposed
displacement vectors for two SDOF systems sharing the same x = 0.4, but different h/B
ratios.

response is governed by soil nonlinearity. In the opposite case, x → 0, toppling is mainly
geometry-related and the role of h/B is minimized.

Based on the presented numerical analysis results, an approximate simplified “empiri-
cal” equation is proposed, correlating ϑult/ϑc with h/B and x (= N/Nult). Such a correlation
may be applied for preliminary estimation of the toppling rotation (and, hence, of the
available ductility) of SDOF systems rocking on inelastic soil:

ϑult

ϑc
= (1 − x) + 1

3

[
1 − log

(
h

B

)] √
x. (11)

The proposed equation is graphically illustrated in Fig. 14b to allow for comparison with
the “rigorous” numerical analysis solution. Note that the proposed Eq. (11) yields conser-
vative results for the entire range of x and for 1 ≤ h/B ≤ 10. Its effectiveness is reduced for

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l T
ec

hn
ia

l U
ni

ve
rs

ity
 o

f 
A

th
en

s]
 a

t 0
2:

00
 1

8 
Se

pt
em

be
r 

20
12

 



Rocking of SDOF Systems: Dimensional Analysis 1017

x < 0.1 (i.e., for extremely lightly loaded systems) and x > 0.9 (i.e., for extremely heavily
loaded systems). For very slender systems, h/B > 20, Eq. (11) reduces to:

ϑult

ϑc
= (1 − x) (12)

The previously discussed performance is further elucidated through a numerical exam-
ple. Let’s assume, two slender SDOF h/B = 4 systems, the first being lightly loaded
(x = 0.2) and the second relatively heavily loaded (x = 0.6). As already discussed, the
dimensionless toppling rotation ϑult/ϑc, and hence the rocking ductility μR, decreases with
increasing x = N/Nult (i.e., with decreasing FSv) for a given h/B ratio. Indeed, as depicted
in Fig. 14a, the metaplastic performance of the lightly loaded system is superior, achiev-
ing ϑult/ϑc = 0.88 (≈ 0.86 according to the proposed equation), compared to 0.53 (≈
0.50 according to the proposed equation) of the heavily loaded system. This difference may
be attributed to the detrimental role of P–δ effects, which becomes increasingly important
for large values of x.

Interestingly, for a given dimensionless vertical load x (i.e., for a given FSv ) the top-
pling rotation ϑult/ϑc (and hence μR) decreases with increasing slenderness ratio h/B.
An illustrative example is presented in Fig. 14b, referring to two systems carrying the same
dimensionless vertical load x = 0.4 (i.e., sharing the same FSv = 2.5), but with distinctly
different slenderness ratios h/B ratio: a short system of h/B = 1, and a very slender system
of h/B = 10. Evidently, the toppling rotation of the shorter system is substantially larger,
reaching ϑult/ϑc ≈ 0.8 compared to (less than) 0.6 of the slender system. In order to clar-
ify this phenomenon, two deformed mesh snapshots at the instant of maximum moment
are presented in Fig. 14c, along with the corresponding displacement vectors. In the case
of the slender system (left snapshot), the response of the foundation is governed by the
overturning moment leading to a clearly rotational failure mechanism. On the contrary, for
low h/B ratios (right snapshot) a “hybrid” failure mechanism is observed, combining rota-
tion and horizontal translation. This failure mechanism seems to be more ductile, as it is
accompanied by mobilization of passive failure underneath the front (i.e., right) side of the
footing.

7. Synopsis and Conclusions

Aiming to provide a generalization framework for future research on the subject, this paper
has presented a formal dimensional analysis of SDOF systems rocking on compliant soil,
taking account of soil inelasticity, foundation uplifting, and P–δ (second-order) effects. The
effectiveness of the proposed dimensional formulation, under static and dynamic condi-
tions, was verified through numerical analyses of self-similar “equivalent” systems. Then, a
parametric study was conducted to gain further insights on the key factors affecting the per-
formance of SDOF systems rocking on nonlinear soil, with emphasis on their metaplastic
ductility and toppling rotation.

The main findings of the presented research can be summarized as follows.

1. The factor of safety against vertical loads, FSv, plays a crucial role in the perfor-
mance of SDOF system rocking on inelastic soil. In the case of heavily loaded
system (FSv < 2) extensive soil plastification takes place underneath the footing,
leading to mobilization of a bearing capacity failure mechanism. On the contrary,
in the case of lightly loaded systems (FSv > 5) rocking is materialized mainly
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1018 R. Kourkoulis et al.

through uplifting, with limited soil plastification localized underneath the edge of
the footing.

2. Under cyclic loading, a significant overstrength is observed for heavily loaded
systems (the cyclic moment capacity exceeds the monotonic backbone curve).
This remarkable feature is probably attributable to soil hardening during repeated
cycles of loading, in combination with the role of P–δ effects. Being uplifting-
dominated, the cyclic response of lightly loaded systems (i.e., having large FSV)
does not exhibit such phenomena: the moment capacity is mainly geometry-related,
being almost equals to that of the equivalent rigid block, mgB/2. Characterized
by sinking-dominated response, heavily loaded systems tend to accumulate sub-
stantial permanent settlement. On the contrary, lightly loaded systems exhibit
uplifting-dominated response, developing minor residual settlements.

3. Second-order (P–δ) effects may lead to a substantial reduction of the monotonic
moment capacity, and, hence, neglecting them may lead to unconservative design.
Their effect is minimal for short structures (h/B = 1), where the prevailing failure
mechanism is mainly in the form of horizontal translation rather than rotation. For
slender structures (h/B ≥ 3), where moment becomes the prevailing mechanism, P–
δ effects become increasingly detrimental leading to a decrease of the monotonic
moment capacity of the order of 20–50% for a wide range of dimensionless vertical
loads: 0.3 < x < 0.8 (x = N/Nult = 1/FSv ). For more realistic values of x < 0.3
(i.e., FSv > 3.5) their role is not that pronounced (leading to a decrease of less than
15%).

4. Quite interestingly, the detrimental role of P–δ effects is observed at the same range
of dimensionless vertical load x (= 1/FSv) where a substantial cyclic overstrength
is observed, also related to P–δ effects. It may be argued that the detrimental role
of P–δ effects in monotonic loading is “reversed” when cyclic loading is consid-
ered. Consequently, the cyclic moment capacity of such systems may very well be
very close to the monotonic capacity, ignoring P–δ effects — a rather encouraging
conclusion, possibly alleviating the risk of unconservative design on the basis of
existing failure envelopes (which typically ignore second order effects).

5. Asymmetric Ricker-type excitations, representative of near-field directivity-
affected seismic motions, tend produce larger maximum and permanent rotations,
compared to symmetric multi-cycle Tsang-type excitations, which are considered
representative of far-field seismic motions. The latter, containing multiple strong
motion cycles, are critical in terms of permanent settlement. The dimensionless fre-
quency of the seismic excitation fE/p plays an important role: its decrease leads
to an increase of maximum and residual rotation and permanent settlement (i.e.,
long-period motions are more detrimental).

6. The dimensionless toppling rotation ϑult/ϑc (where ϑc is the toppling rotation
of the equiavlent rigid block on rigid base) of foundation–structure systems
rocking on compliant inelastic soil is a function the normalized vertical load
x = N/Nult = 1/FSv and the slenderness ratio h/B. In the case of lightly loaded
systems (i.e, x → 0; FSv → ∞), soil plastification is limited and the metaplastic
response approaches that of the equivalent rigid block: ϑult/ϑc → 1. Due to increas-
ing soil plastification, ϑult/ϑc decreases with the increase of x (or with the decrease
of FSv): ϑult/ϑc → 0 for x → 1. The role of the slenderness ratio h/B becomes
increasingly important when the response is governed by soil nonlinearity (x → 1).

7. An approximate simplified “empirical” equation is proposed, correlating ϑult/ϑc

with h/B and x(= N/Nult), to be applied for preliminary estimation of the toppling
rotation of SDOF systems rocking on inelastic soil:
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Rocking of SDOF Systems: Dimensional Analysis 1019

ϑult

ϑc
= (1 − x) + 1

3

[
1 − log

(
h

B

)]√
x. (Eq. 11)

This approximate simplified equation yields conservative results for the entire range of x,
and for 1 ≤ h/B ≤ 10. Its effectiveness is reduced for x < 0.1 and x > 0.9. For very slender
systems, h/B > 20, the following approximation is considered accurate:

ϑult

ϑc
= (1 − x) . (Eq. 12)
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