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Abstract

A generalized spring multi-Winkler model is developed for the static and dynamic response of rigid caisson foundations of circular, square, or

rectangular plan, embedded in a homogeneous elastic. The model, referred to as a four-spring Winkler model, uses four types of springs to model

the interaction between soil and caisson: lateral translational springs distributed along the length of the caisson relating horizontal displacement at

a particular depth to lateral soil resistance (resultant of normal and shear tractions on the caisson periphery); similarly distributed rotational springs

relating rotation of the caisson to the moment increment developed by the vertical shear tractions on the caisson periphery; and concentrated

translational and rotational springs relating, respectively, resultant horizontal shear force with displacement, and overturning moment with

rotation, at the base of the caisson. For the dynamic problem each spring is accompanied by an associated dashpot in parallel. Utilising

elastodynamic theoretical available in the literature results for rigid embedded foundations, closed-form expressions are derived for the various

springs and dashpots of caissons with rectangular and circular plan shape. The response of a caisson to lateral static and dynamic loading at its top,

and to kinematically-induced loading arising from vertical seismic shear wave propagation, is then studied parametrically. Comparisons with

results from 3D finite element analysis and other available theoretical methods demonstrate the reliability of the model, the need for which arises

from its easy extension to multi-layered and nonlinear inelastic soil. Such an extension is presented in the companion papers by the authors

[Gerolymos N, Gazetas G. Development of Winkler model for lateral static and dynamic response of caisson foundations with soil and interface

nonlinearities. Soil Dyn Earthq Eng. Submitted companion paper; Gerolymos N, Gazetas G. Static and dynamic response of massive caisson

foundations with soil and interface nonlinearities—validation and results. Soil Dyn Earthq Eng. Submitted companion paper.].

q 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Caisson foundations deeply embedded in soft soil have been

widely used to support major structures, especially bridges.

Monumental examples are the Tagus bridge in Portugal,

supported on perhaps the tallest (88 m high) caisson in the

world; the San-Francisco-Oakland bay bridge whose major

pier is founded on a 75 m high caisson; the Williamsburg and

Verrazano Narrows bridges in New York; the Port island and

Nishinomiya-ko bridges in Japan, the massive caissons of

which played a major role in the survival of these bridges

during the Kobe 1995 earthquake [3]. Despite their large

dimensions, caisson foundations have been shown not to be

immune to seismic loading as it was believed for many years.

This was confirmed in the Kobe (1995) earthquake, which
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caused many structures founded on caissons to suffer severe

damage.

The lateral and seismic response of deep foundations has been

of considerable interest for many years. A number of methods of

varying degrees of accuracy, efficiency and sophistication have

been developed. However, only few of them are devoted to

caissons. Instead, the methods of solution developed for (rigid)

embedded foundation and for (flexible) piles have been

frequently adapted to deal with the caisson problem. A partial

list of such methods would include (in crudely-chronological

order): the analytical solution of Tajimi [4] for a cylindrical

foundation embedded in a stratum and bearing on bedrock; the

versatile approximate analytical solutions of Novak and

Beredugo [5]; the ‘consistent-boundary’ finite element formu-

lations of Kausel and Roesset [6] for circular foundations in

layered deposits over bedrock; the boundary element solution for

rectangular foundations in a halfspace by Dominguez [7]; the

semi-numerical formulation of Tassoulas [8] applied to

embedded cylindrical foundationswith variable sidewall heights;

the time-domain boundary element method of Karabalis and

Beskos [9]; the hybrid boundary-element and finite element
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solution ofMita and Luco [10] for square foundations embedded

in a halfspace; and the ‘flexible-volume’ substructuring technique

of Tajirian and Tabatabaie [11]. Harada [12] developed an

approximate analytical solution for cylindrical foundations

combining Tajimi’s and Novak’s concepts. One of the most

comprehensive studies on the seismic response of flexible and

rigid caissons was conducted by Saitoh [13], who extended

Tajimi’s 1969 approximation to account for caisson flexibility

and for soil and interface nonlinearities (separation and gapping

of the caisson from the soil). He showed that Novak’s plane strain

approximation, logical as it may be, leads to inaccurate results.

Most of the above methods refer to cylindrical foundations.

A comprehensive series of studies on the static and dynamic

response of embedded rigid foundations having various plan

shapes (ranging from rectangular of any aspect ratio to

triangular) have been published by Gazetas, and co-workers

[14–17]. Utilizing an efficient boundary-element method, and

numerous results from the published literature, they developed

closed-form semi-analytical expressions and charts for

stiffnesses and damping of horizontally and rotationally loaded

arbitrarily-shaped rigid foundations embedded in homo-

geneous soil [18]. Incomplete contact between the foundation

vertical walls and the surrounding soil were taken into account

in a crude way. Ample confirmation of the basic validity of

some of the main concepts and results in these publications

were recently provided by Gadre and Dobry [19] through

centrifuge modeling.

However, the above-mentioned analytical expressions and

charts cannot directly apply to multi-layered soils. Further-

more, it would be impossible to even crudely extend them for

use with nonlinearly behaving soils, or to model realistically

phenomena such as separation (gapping) and uplifting that may

take place under strong static and seismic excitation. On the

other hand, the widely available commercial finite-element and

finite-difference computer codes, while in principle capable of

treating soil nonlinearities, are not yet an easy solution when

rectangular caissons are studied (requiring a 3D mesh),

embedded in deep soil deposits and subjected to seismic

shaking (both requiring special and very distant boundaries),

and undergoing strong oscillations with the aforementioned

interface nonlinearities (requiring special interface elements).

In an effort to bridge this apparent gap in the available

methods and tools for analysis of lateral loaded caisson

foundations, this paper along with the two companion papers

by the present authors [1,2] develops a generalized Winkler

type method described by four types of springs (and associated

dashpots). Our aim is to provide, a sound engineering solution

to the problem, with a method that has the following attributes:

(a) it provides the response to static, cyclic, and dynamic

loading applied at the top of a caisson, as well as to

seismic ground deformations (‘kinematic’ excitation);

(b) it models the full variety of caisson plan shapes that are

usually encountered in practice (circular, square,

rectangular, elliptical);

(c) it readily handles any horizontally layered soil profile

(as well as continuously inhomogeneous soils);
(d) it treats both material (soil) inelasticity and geometric

(interface) nonlinearities in an approximate but realistic

fashion.

The present paper, the first in the sequence, develops an

elastic ‘four-spring’ Winkler model and calibrates it with the

aforementioned elastodynamic solutions (in the form of

analytical expressions) of Ref. [18] for foundations embedded

in a homogeneous elastic halfspace. The prediction of the

model is satisfactorily compared with results from 3D-finite

element analysis.

The subsequent companion paper [1] addresses the issue of

soil and interface nonlinearities, and develops a versatile inelastic

Winkler model in which each type of ‘spring’ is described

through a nonlinear differential equation of the Bouc-Wen type.

The model is validated in the third companion paper [3]

against results from (a) load tests, and (b) 3D finite element

analysis, and is then utilised in a parameter study that sheds

light on the role of material and geometric nonlinearities.

It is noted that in addition to the previously mentioned

research, Davidson et al. [20] had also developed a four-spring

Winkler model for rigid caissons, and calibrated it with 3D-

finite element analysis, and static load tests. Also of related

interest is the work of Mylonakis [23] who introduced the

Vlasov-Leontiev ‘Winkler-with-shear-layer’ idealization to

model: (a) the dynamic soil reaction against caissons, (b) the

dynamic impedance of the caisson, and (c) the dynamic

interaction between two neighboring caissons. He derived

explicit closed-form solutions for a flexible large-diameter

cylindrical shaft embedded in a homogeneous soil resting on a

rigid base, for various boundary conditions.
2. The physics of the problem and a Winkler model

Our study deals with rigid caisson foundations. Their depth

to width ratio is in the range of 0.5–3, depending on soil

deformability. By contrast to piles, which are slender

structures, with caisson foundations the lateral soil reaction is

not the sole resisting mechanism. The shear tractions at the

circumference of the caisson are also of considerable

importance and must not be ignored in foundation response

analysis. On the other hand, caissons differ from the usual

embedded foundations (characterized by a depth to width ratio

smaller than 1), the base of which provides most of, or even the

only resistance to loading. Fig. 1 shows a crude classification

according only to their geometry, ignoring the influence of soil

stiffness, which is an equally important parameter.

Caisson–soil interaction is strongly related to the complex

stress distribution along the caisson shaft. Fig. 2 shows the

stress pattern for a caisson with (a) circular and (b) rectangular

cross-section.

A dynamic Winkler four-spring model is developed in this

paper incorporating distributed translational (lateral) and

rotational (rocking) springs and dashpots, as well as

concentrated shear translational (shear) and rotational

(moment) springs and dashpots at the base of the caisson.



Fig. 1. A possible crude classification of foundations according to the slenderness or depth of embedment of their individual elements. (The flexibility of a caisson

depends on whether it is massive or cellular; on the stiffness of the soil; and on the material of the caisson.)
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These four types of springs and dashpots are related to the

resisting forces acting on the caisson shaft and base, as follows:

† The distributed lateral springs kx and dashpots cx are

associated with the horizontal soil reaction on the

circumference (shaft) of the caisson.
Fig. 2. Stresses at caisson–soil interface
† The distributed rotational springs kq and dashpots cq are

associated with the moment produced by the vertical shear

tractions on the circumference (shaft) of the caisson.

† The resultant base shear translational spring Kh and dashpot

Ch associated with the horizontal shearing force on the base

of the caisson.
with circular, or square plan shape.



Fig. 3. The four-types of springs and dashpots for the analysis of inertially and

kinematically loaded caissons.

N. Gerolymos, G. Gazetas / Soil Dynamics and Earthquake Engineering 26 (2006) 347–361350
† The resultant base rotational spring Kr and dashpot Cr

associated with the moment produced by normal pressures

on the base of the caisson.
Fig. 4. (a) Elastic response of a caisson subjected to lateral dynamic loadingM0, Q0

caisson) in lateral translation (SHH), rotation (SMM) and cross-coupling of the translat

of clarity of the figure.
The dashpot coefficients express the soil ‘viscous’ resistance

that stems from both radiation of wave energy away from the

caisson wall and hysteretic dissipation of energy in the soil.

The proposedWinkler spring model is illustrated schematically

in Fig. 3.
3. Lateral response of caisson: equations and parameters

The problem studied herein is that of circular, square, or

rectangular in plan caisson embedded in homogeneous elastic

soil over a deformable bedrock, and subjected to lateral

dynamic excitation at its top: Q0(t) and M0(t) (Fig. 4).

According to this figure the positive rotation and overturning

moment are clockwise. The caisson is a rigid block of mass m,

and mass moment of inertia about the center of gravity Jc. The

depth of embedment of the caisson is D while the height of

the sidewall that is in contact with the surrounding soil is d. The

Winkler four-spring model described in the previous section is

used for simulating the soil–caisson interaction. Dynamic

equilibrium of the shear forces with respect to the base of the

caisson gives

Q0Km €ucKPxKQb Z 0 (1)

where ucZuc(t) is the displacement of the caisson at its center

of gravity, given by

uc Z ub Cqc
D

2
(2)
at its top. (b) Schematic definition of the global stiffnesses (i.e. at the top of the

ion and rotation (SHM). The associated dashpot terms are not shown for the sake
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where ubZub(t) is the displacement of the caisson base, and

qcZqc(t) the rotation angle of the caisson. PxZPx(t) is the

resultant sidewall horizontal resistance due to the lateral soil

reaction (Fig. 2),

Px Z

ðd
0

pxðz;tÞdzZ

ðd
0

½kxðzÞuðz;tÞCcxðzÞ _uðz;tÞ�dz (3)

where z is the spatial coordinate starting from the base of the

caisson, u is the displacement of the caisson at the location z

determined as

uZ ub Cqcz (4)

and Qb the shear resistance at the base of the caisson given by

Qb ZKhub CCh _ub (5)

Dynamic moment equilibrium with respect to the base of the

caisson gives

M0 CQ0DKJc €qcKm
D

2
€ucKMxKMqKMb Z 0 (6)

where MxZMx(z,t) and MqZMq (z,t) are the sidewall resisting

moments arising from the horizontal soil reaction px and the

vertical shear stresses txz or trz, respectively, on the caisson

periphery. Mx is expressed as

Mx Z

ðd
0

pxðz;tÞz dzZ

ðd
0

½kxðzÞuðz;tÞCcxðzÞ _uðz;tÞ�z dz (7)

and Mq as

Mq Z

ðd
0

mqðz;tÞdzZ

ðd
0

½kqðzÞqcðtÞCcqðzÞ _qcðtÞ�dz (8)

Mb is the resultant resisting moment at the base of the caisson

Mb ZKrqc CCr
_qc (9)

Eqs. (1) and (6) can be rewritten in a matrix form as

Mb

€ub

€qb

( )
CCb

_ub

_qb

( )
CKb

ub

qb

( )
ZPb (10)

where the mass matrix

Mb Z

m m
D

2

m
D

2
Jc Cm

D2

4

2
66664

3
77775 (11)
the stiffness matrix

Kb Z
Khh Khr

Khr Krr

" #

Z

Kh C

ðd
0

kxðzÞdz

ðd
0

kxðzÞz dz

ðd
0

kxðzÞz dz Kr C

ðd
0

kxðzÞz
2 dzC

ðd
0

kqðzÞdz

2
66666664

3
77777775

(12)

Cb Z
Chh Chr

Chr Crr

" #

Z

Ch C

ðd
0

cxðzÞdz

ðd
0

cxðzÞz dz

ðd
0

cxðzÞz dz Cr C

ðd
0

cxðzÞz
2 dzC

ðd
0

cqðzÞdz

2
66666664

3
77777775

(13)

and the damping matrix (due to both radiation and hysteretic

dissipation in the soil). The external force vector Pb is

Pb Z
Q0

M0 CQ0D

( )
(14)

In the frequency domain, the complex stiffness matrix of the

caisson is calculated as

~Kb ZKb C iuCb (15)

which using Eqs. (12), (13), and (15), reduces to

~Kb Z

~Kh C ~kxD ~kx
D2

2

~kx
D2

2
~Kr C ~kqDC

1

3
~kxD

3

2
66664

3
77775 (16)

The dynamic impedance matrix, �S, referred to the top of the

caisson is readily obtained by a coordinate transformation of

Eq. (15)

~SZ
~SHH ~SMH

~SMH
~SMM

" #

Z
~Khh

~KhrKD ~Khh

~KhrKD ~Khh
~KrrK2D ~Khr CD2 ~Khh

" #
(17)

The meaning of the impedances �Sij is sketched in the insert of

Fig. 3. The reliability of the proposed Winkler-type model

depends on the proper choice of the dynamic spring and

dashpot coefficients. These coefficients are frequency dependent

and are functions of both caisson geometry and soil stiffness.

In the following, a simple methodology for the calibration of
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the parameters of the four-spring model is developed, utilising

published results for embedded foundation.
4. Calibration of the spring and dashpot coefficients

Gazetas and Tassoulas [15,16] and Fotopoulou et al. [17]

studied the problem of the lateral oscillation of arbitrarily

shaped rigid foundations embedded in a homogeneous elastic

halfspace, as depicted in Fig. 5. Based on some simple physical

models calibrated with results of rigorous boundary-element

and finite-element elastodynamic formulations, as well as data

from the literature, they developed closed-form expressions for

the dynamic impedances of such foundations [18,21]. For an

arbitrarily shaped foundation in plan view, circumscribed by a

rectangle of width B and length L (LOB), they express the

dynamic impedances, with respect to the center of the base mat,

in the form

~Kemb ZKembcembðuÞC iuCðuÞ (18)

where Kemb is the static stiffness, and cemb(u) the dynamic

stiffness coefficient. C(u) is the frequency-dependent

(radiation and material) damping coefficient. The parameters

that enter in the computation of stiffness and damping in

Eq. (18), are

† Gs, Es, Vs, Va, n: shear modulus, modulus of elasticity, shear

wave velocity, apparent analog velocity, and Poisson’s ratio
Fig. 5. Geometry of a rigid foundation arbitrarily-shaped in plan embedded in a

homogeneous elastic halfspace.
of the soil. Of course, only(any) two of them are enough to

determine all other.

† B, L, D and d: width, length, depth of embedment, and

height of the sidewall that is in contact with the surrounding

soil.

† Ab, Ib and h: area, moment of inertia, and distance of the

centroid of the effective sidewall from the ground surface.

† Aw: total area of the actual sidewall–soil contact surface

(perimeter times D).

† Aw,s and Aw,ce: refer to horizontal oscillations and represent

the sum of the projections of all the sidewall areas in

direction parallel (Aw,s) and perpendicular (Aw,ce) to

loading, subjected to shear (s) and compression–extension

(ce) type of soil reaction, respectively.

† Jws and Iwce: the sum of the polar moments of inertia about

the off-plane axis of rotation of all surfaces actually

shearing the soil, and the sum of moments of inertia of all

surfaces actually compressing the soil about their base axes

parallel to the axis of rotation.

† Di: The distance of surface Awce,i from the x axis.

Gazetas and workers developed the following formulae for

stiffness and damping in the longitudinal x-axis of a orthogonal

or cylindrical caisson

KHHðuÞ

zKH 1C0:15

ffiffiffiffiffiffiffi
2D

B

r !
1C0:52

8hAw

BL2

� �0:4� �
cembðuÞ

(19)

where KH is the static horizontal stiffness of the caisson base

[15], and cemb is a dynamic stiffness coefficient presented in

chart form [15,18] in terms of D/B and d/B as a function of the

dimensionless parameter a0 (ZuB/2Vs). In the case of a fully

embedded caisson, curve fitting gives cemb in the form

cembz1

Ca0
D

B

� �
0:08K0:0074

D

B

� �� �
a20

�

K 0:31K0:0416
D

B

� �� �
a0K0:0442

D

B

� �
C0:14

� (20)

The horizontal dashpot coefficient is

CHHðuÞZCHðuÞCrVsAws CrVaAwce (21)

where

CHðuÞZ rVsAbcsurðuÞ (22)

where CH(u) is the damping coefficient of the caisson base

[16], taken as that of a surface foundation on halfspace. The

coupled swaying-rocking complex impedance is approximated

by

~KHMz
1

3
d ~KHH (23)
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The dynamic rocking stiffness is equal to

KMMðuÞZKMðuÞ 1C0:92
2d

L

� �0:6

1:5½

�

C
2d

L

� �1:9 d

D

� �K0:6��
ð1K0:30a0Þ ð24Þ

where KM is the static rocking stiffness of the caisson base [18],

taken as that of a surface foundation on halfspace.

The radiation dashpot constant in rocking oscillation is

expressed as

CMMðuÞZCMðuÞCrVLaIwcec1ðuÞ

CrVs Jws C
X
i

AwceiD
2
i

� 	" #
c1ðuÞ (25)

where CM(u) is the dashpot of the caisson base [17]. The

dynamic dashpot coefficient c1 is given by

c1z0:25C0:65
ffiffiffiffiffi
a0

p d

D

� �Ka0=2 2D

B

� �K0:25

(26)

Thus, the complex dynamic impedance matrix of the caisson

referring to the base has been calculated as

~Kemb Z
~KHH

~KHM

~KHM
~KMM

" #
(27)

There is a number of ways to determine the complex spring

stiffnesses functions ~kk and ~kq of the ‘equivalent’ Winkler

model. The simplest way that we follow here is to equate

the diagonal terms in the matrices of Eqs. (16) and (27). A

check is then necessary to ensure that the resulting

off-diagonal cross-term KHM in Eq. (33) is at least

reasonably similar with the respective term in Eq. (17).

We thus derive

~kx Z kx C iuCx Z
1

D
ð ~KHHK ~KhÞ (28)

and

~kq Z kq C iuCq

Z
1

D
~KMMK ~Kr C

1

3
D2 ~KhK

1

3
~KHHD

2

� �
(29)

These are the general expressions from which the

distributed springs and dashpots of the model can be

derived (easily, even if not always in closed form) for any

shape in plan of the caisson. For instance, for the particular

cases of greatest interest, the square and circular plan

shapes, and static lateral loading the above equations yield

the following distributed springs
† Square caisson

kxz2:18
D

B

� �K0:13

Es and kqz2:17
D

B

� �K1:31

EsD
2 (30)

† Circular caisson

kxz1:75
D

B

� �K0:13

Es and kqz0:85
D

B

� �K1:71

EsD
2 (31)

Fig. 6 compares the static spring stiffnesses derived from the

approximated relations of Eqs. (30) and (31), with their exact

values calculated from Eqs. (28) and (29). It is interesting to

note that for a slenderness ratio D/Bz10, Eq. (31) for the

cylindrical caisson simplify to

kxz1:2Es and kqz0 (32)

which are reminiscent of the spring moduli used for laterally

loaded piles, e.g. Ref. [22]. Novak’s spring stiffnesses [24] for

a0Z0.3 are also plotted in Fig. 6. Novak’s solution under-

estimates slightly the horizontal spring stiffness at small D/B

values, but quite severely the rotational one. This was

anticipated since Novak’s springs are derived for a 2D

horizontal slice of the caisson and surrounding soil



Fig. 7. Comparison of the translational static spring stiffness, calculated with the simplified Eqs. (30) and (31) (dotted black lines) and Mylonakis’ (2005) solution

(grey solid line) for a flexible fixed-head and infinitely-long circular caisson, and for Poisson’s ratio of the soil nsZ0.3.
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(plane strain condition) and do not account for the 3D geometry

of caisson foundations.

Fig. 7 compares the static spring stiffness derived from the

approximate relations of Eq. (30) for a square caisson and Eq.

(31) for a circular caisson, with the Mylonakis’ [23] solution

for a flexible fixed-head and infinitely-long circular caisson.

The comparison, however, is not straightforward given that
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Mylonakis’ solution is a function of the caisson–soil stiffness

contrast, Ep/Es, while Eqs. (30) and (31) are valid only for rigid

caissons and depend only on the slenderness ratio D/B. The

comparisons are quite satisfactory, especially if one considers

the different assumptions adopted in the two solutions.
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for comparison.
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Fig. 8 illustrates the dependence on the slenderness ratio

D/B of the static spring stiffnesses derived from Eqs. (28) and

(29), for ‘aspect’ (length to width) ratios L/BZ1, 2, and 3.

While the translational stiffness is practically insensitive to

variations in either the slenderness or the aspect ratios, the

rotational stiffness is strongly affected. Results for elliptical

foundation plan could be derived using the expression

presented recently by Mylonakis et al. [21].
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5. Parametric study of the inertial caisson response

This chapter presents the results of a parametric study aimed

at investigating the influence of several key parameters on the

lateral dynamic response of fully-embedded square-shaped

caisson foundations.

Figs. 9 and 10 compare the normalized translational and the

rotational stiffnesses of the distributed (local) soil springs as

functions of the dimensionless frequency a0. Three different

slenderness ratios (D/BZ1, 2, and 3) are examined. Note that

as the slenderness ratio increases, the dynamic stiffnesses

(translational, normalized by Es and rotational normalized by

EsD
2) decrease. This reveals that in the limit of extremely high

slenderness the vertical shear resistance mechanism along the
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Fig. 10. Normalized coefficients (a) kq and (b) cq of dynamic rotational spring

and dashpot (distributed along the depth) for square caissons with slenderness

ratios D/BZ1, 2 and 3, computed with Eq. (29). The spring and dashpot curves

computed using the Novak et al. [24] approximation for a cylindrical caisson

with slenderness ratio D/BZ1 are plotted with dotted lines.
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Fig. 11. Normalized real and imaginary part of the resultant swaying stiffness

atop a square caisson, for slenderness ratios D/BZ1, 2 and 3. Solution for

D/BZ1 using Novak’s method gives the dotted curves.
circumference vanishes and the caisson behavior approaches

that of a pile. Novak’s springs [24] for D/BZ1 are also plotted

in Figs. 9 and 10. It is interesting to note that the static

translational stiffness derived from Novak’s plane strain

solution is equal to zero.

Figs. 11–13 illustrate the normalized real and imaginary

parts of the complex global stiffnesses (namely the swaying,

rocking, and cross swaying–rocking components) atop of the

caisson utilizing the distributed springs from Eqs. (28) to (29),

and those proposed by Novak. Notice that the dynamic

stiffnesses are decreasing functions of the dimensionless

frequency a0. But the normalized imaginary parts increase

almost linearly with frequency, which would lead to the

filtering-off of the high-frequency components of a seismic

motion.

Fig. 14 shows the magnitude of the dynamic to static

displacement and rotation ratio, respectively, atop the caisson,

for unit shear force (Q0Z1) and zero bending moment (M0Z0).

The ratios are plotted as functions of the dimensionless
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Fig. 12. Normalized real and imaginary part of the resultant rocking stiffness

atop a square caisson, for slenderness ratios D/BZ1, 2 and 3. Solution for

D/BZ1 using Novak’s method gives the dotted curves.
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Fig. 13. Normalized real and imaginary part of the resultant cross swaying–

rocking stiffness atop a square caisson, for slenderness ratios D/BZ1, 2 and 3.

Solution for D/BZ1 using Novak’s method gives the dotted curves.
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frequency a0 for three values of slenderness ratio D/B. The

hysteretic damping ratio x is equal to zero. Observe that due to

the huge radiation damping the system exhibits no resonance

phenomena. For frequencies above the first fundamental

frequency of the caisson the motion vanishes exponentially.

Fig. 15 illustrates the normalized dynamic displacement and

rotation atop the caisson, as a function of the dimensionless

frequency a0 for selected values of normalized loading ratio

M0/Q0D. The curves correspond to a slenderness ratio ofD/BZ
2. Small values of the loading ratioM0/Q0D correspond to short

superstructure systems (such as short bridge piers), while larger

values are representative of tall systems. We conclude that

while the normalized displacement is an increasing function of

the loading ratio, the normalized rotation remains, surprisingly,

insensitive.

To interpret this paradox, we investigate the influence of the

existence of a cut-off frequency for radiation damping on the

response of the caisson. Fig. 16 plots the same results with

those of Fig. 15 except that the radiation damping is spuriously

reduced to merely 10% of its actual value. This is
representative of a foundation response when the fundamental

period of its supported superstructure is larger than the first

natural period of the soil. The two eigenfrequencies of the

caisson–soil system can be easily observed in this figure. The

first one (a0z1.30) corresponds to the translational mode, and

the second (a0z2.25) to the rotational mode. For a loading

ratio M0/Q0DZ0, the maximum normalized displacement

occurs at the first eigenfrequency of the caisson–soil system.

Increasing the loading ratio the contribution of the second

eigenfrequency grows up, and finally dominates the response

for loading ratios greater than five. On the other hand, the peak

normalized rotation is controlled by the second eigenfre-

quency; the contribution of the first eigenfrequency to the

rotational oscillation is negligible and decreases with increasing

loading ratio. But the second fundamental frequency of the

caisson–soil system corresponds to high frequencies where the

radiation damping in a homogeneous halfspace is huge, leading

eventually to normalized rotation being less affected by

variations in the loading ratio.
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rotation (bottom) atop a square caisson. Loading ratios M0/Q0DZ0, 1, 5, 100,

and slenderness ratio D/BZ2.
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Fig. 17 investigates the influence of hysteretic damping on

the normalized displacements of a caisson (xZ0 and 10%,

respectively). Plots are given for a slenderness ratio D/BZ2,

and for three values of the loading ratio. The full radiation

damping of the caisson has been taken into account. Observe

that the influence of the hysteretic damping on the response of

the caisson is small and could be ignored in design without any

remarkable loss.
6. Comparison with results of 3D-finite element analysis

As an attempt to evaluate the accuracy of the model, a

comparison is performed with results from finite element

analysis. The problem studied is a rigid circular caisson of

height DZ6 m and diameter BZ3 m (D/BZ2), embedded in

homogeneous elastic soil stratum. Young’s modulus, Poisson’s

ratio, mass density, and hysteretic damping of the soil are

constant with depth: EsZ100 MPa, nsZ0.3, rsZ2 mg/m3, and

xZ0%. A detailed numerical model of the caisson and the

surrounding soil is developed with the code ABAQUS. The

finite element mesh used in the analysis is depicted in Fig. 18.

Both the caisson and the soil are modeled with 3D elements.

The far field is represented with infinite elements ensuring that

the displacements vanish ‘at infinity’. The soil stratum reaches
10 m deeper than the caisson base, thus having a negligible

influence on its response.

Steady-state analyses were performed to compute the

magnitude of the dynamic to static ratios of displacement (a)

and rotation (b) atop the caisson. The normalized loading ratios

M0/Q0D are 0 and 1.67. The results of the finite element and the

Winkler method are compared in Fig. 19. The agreement is

quite good, with the proposed method predicting slightly larger

values than those of the finite element model.
7. Kinematic response of caisson

While long-pile foundations could simply follow more-or-

less the seismic motion of the ground, in many cases, caissons

(characterized by considerable rigidity) modify the soil

deformation and generate additional soil strains in their

vicinity. As a result, the incident seismic waves are scattered

and the seismic excitation to which the caisson-foundation is

effectively subjected to differs from that of the free field

motion. This kinematic filtering effect is more pronounced at

small slenderness ratios and high bending rigidity. Increasing

frequency of the excitation, tends to increase the waviness of

the soil response and thereby increases the filtering effect.
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(bottom) ratio atop a square caisson for loading ratiosM0/Q0DZ0, 1, 5, and for

slenderness ratio D/BZ2. The radiation damping of the caisson is reduced to

10% of its actual value.

Fig. 18. The finite element mesh used in the analysis. The caisson elements are

shown with deep grey colour, the surrounding soil elements with soft grey, and

the infinite elements with mid grey colour.
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The problem studied herein is that of a rectangular or

circular in-plan caisson embedded in a single layered elastic

soil over a flexible bedrock, and subjected to kinematic loading

due to vertical shear wave propagation. Solution is carried out

in two steps: (a) the free-field soil response (without the

presence of the caisson) is first calculated, and (b) this free-field
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Fig. 17. Comparison of the normalized dynamic displacement atop a square-

shaped caisson for hysteretic damping ratios equal to xZ0 and 10%,

respectively.
motion is then imposed at the supports of the caisson springs

and dashpots. The method of analysis is schematically

illustrated in Fig. 20.

Equations of motion with respect to the base of the caisson

are derived from Eq. (10) by replacing the vector of effective
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Fig. 19. Magnitude of the dynamic to static ratios of displacement (top) and

rotation (bottom) atop the cylindrical caisson (DZ6 m, BZ3 m) of Fig. 18 for

loading ratios M0/Q0DZ0 (black lines and circles) and 1.67 (grey lines and

triangles), computed with the proposed Winkler model (solid lines) and the

finite element model (triangles and circles).



Fig. 20. Schematic illustration of the method of analysis of the response of a ‘kinematically’ loaded caisson: The free-field motion due to vertical shear waves (left)

imposes horizontal displacement and rotation at the supports (i) of the distributed springs and dashpots (kx, cx; kq, cq) along the caisson height, and (ii) of the resultant

springs and dashpots (Kh, Ch; Kr, Cr) of the base.
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loading, Pb, given in Eq. (14) with

Pb Z

ðd
0

~kxðzÞUffðzÞdzC ~KhUffð0Þ

ðd
0

~kxðzÞUffðzÞz dzC

ðd
0

~kqðzÞU
0
ffðzÞdzC ~KrU

0
ffð0Þ

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

(33)

where Uff and U 0
ff are the free-field displacement and its

derivative with respect to z. Details on the derivation of Eq.

(33) is given in Appendix A. For an elastic soil layer supported

on a ‘flexible’ bedrock, Uff is equal to [25]

UffðzÞZUg

exp½ikðDKzÞ�Cexp½KikðDKzÞ�

ð1CaÞexpðikDÞC ð1KaÞexpðKikDÞ
(34)

where Ug is the displacement amplitude at the base of the soil

layer, k is the complex wave number given by

kZ
u

Vs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C2ixs

p (35)

where a is the complex impedance ratio given by

aZ
rsVs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C2ixs

p

rrVr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C2ixr

p (36)

where subscript s refers to soil and r to rock.

Solution of Eqs. (10) and (33) can be solved in closed form

for this case of homogeneous stratum. This solution is explored

herein in the form of parametric study. To present the results of

our analysis in a convenient form, the following dimensionless
parameters are defined:

heffðuÞZ
u0ðuÞ

UffðD;uÞ
(37)

the ‘effective’ displacement ratio at the top of the caisson,

qeffðuÞZ
q0ðuÞD

UffðD;uÞ
(38)

the ‘effective’ rotation ratio at the top of the caisson,

AffðuÞZUffðD;uÞ=Uffð0;uÞ (39)

the amplification ratio at the top of the caisson

AcðuÞZ u0ðuÞ=Uffð0;uÞ (40)

the amplification ratio at the surface of the soil profile, and

b0 Z
uD

Vs

(41)

the dimensionless frequency with respect to the caisson height.

Fig. 21 compares the ‘effective’ top displacement and

rotation ratios of a square-shaped caisson for three typical

slenderness ratios (D/BZ1, 2, and 3), as functions of the

dimensionless frequency b0. The solution developed by the

authors utilizing Novak’s springs for D/BZ1, is also shown in

this figure. The hysteretic damping in the surrounding soil is

equal to xZ20%; in the free-field soil equal to xsZ5%. The

mass density of the caisson has been ignored. It is noted that

both top displacement and rotation of the caisson attain

negligibly small (or even zero) values at a discretely infinite
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free-field response analysis of a soil column supported by a deformable bedrock

of impedance ratio aZ0.07. Solution for D/BZ1 derived by the authors using
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(top) and rotation (bottom) ratios atop a rectangular caisson with slenderness

ratio D/BZ2. The caisson is fully embedded in a homogeneous halfspace. The

kinematic loading has been derived from the free-field response analysis of a

soil column supported by a deformable bedrock of impedance ratio aZ0.07.
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number of values of b0Zb0,n which are multiple of about 6 (or

slightly higher). This is understandable if we realize that a

value

b0 Z
uD

Vs

z2p
D

ls
z6

implies that the wavelength ls of the free-field shear wave is

about equal to the length D of the caisson. Then, as the insert in

Fig. 21 illustrates, the imposed free-field displacements on the

spring supports produce a zero external force and a zero

external moment!

Notice also that for b0!6, the response (heff,qeff) of the

caisson plotted versus b0 is independent of the caisson

slenderness. At higher frequencies this is not exactly the

case, although the undulations of the three curves follow a

similar pattern, with peak values in the studied range occurring
at b0z3, 9 and 15. These values correspond to wave lengths of

about 0.5, 1.5 and 2.5D, respectively, at which, as the insert

illustrates, the free-field displacements impose a large

unbalanced moment on the caisson supports, inducing

eventually its peak response.
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Finally notice that whereas in general heff!1, at low

frequencies (b0%3 approximately),heff reaches valuesup to1.25.

This conclusion is further verified in Fig. 22 where a

comparison between the free-field and caisson ‘amplification’

ratios (also called transfer functions) is portrayed. Finally, the

influence of the aspect ratio L/B on the kinematic response of

the caisson (in the direction of the D) is illustrated in Fig. 23.

Observe that L/B plays an important role only at high

frequencies.
8. Conclusions

A Winkler model with four types of generalized springs

is presented for the lateral static and dynamic response of

rigid caissons in a homogeneous elastic soil. The spring and

dashpot moduli, calibrated using the elastic theory of rigid

embedded foundations, model the complex stress distri-

bution along the shaft of square, rectangular or circular

caisson plan shapes. The predictions of the model compare

to results of 3D-finite element analysis. It is then utilized to

study parametrically the response of a rectangular caisson

subjected to (a) lateral dynamic loading at the top, and (b)

kinematic loading due to vertical seismic shear wave

propagation. Despite its simplicity the model is capable of

capturing the important phenomena of the problem,

including the wave filtering effect at frequencies above the

first natural frequency of the soil.

The versatility of the model makes it easy to extend it to the

most interesting cases inhomogeneous and nonlinear soil. This

is done in the two companion papers [1,2].
Appendix A. Regarding the derivation of Eq. (33)

The equilibrium of a kinematically loaded rigid caisson with

respect to its base gives

Km €ucðtÞK

ðd
0

~kxðzÞ½uðz;tÞKUffðz;tÞ�dzK ~Kh½ubðtÞKUffð0;tÞ�Z 0

(A1)

for the horizontal forces, and

KJc €qcðtÞKm
D

2
€ucðtÞK

ðd
0

~kxðzÞ½uðz;tÞKUffðz;tÞ�z dz

K

ðd
0

~kqðzÞ½qcðtÞKU 0
ffðz;tÞ�dzK ~Kr½qcðtÞKU 0

ffð0;tÞ�

Z 0 (A2)

for the overturning moments. Using Eqs. (2) and (4), and

transferring all the terms of Uff and U
0
ff to the right side of Eqs.

(A1) and (A2), Eq. (33) is obtained.
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