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Abstract

As an extension of the elastic multi-spring model developed by the authors in a companion paper [Gerolymos N, Gazetas G. Winkler model for

lateral response of rigid caisson foundations in linear soil. Soil Dyn Earthq Eng; 2005 (submitted companion paper).], this paper develops a

nonlinear Winkler-spring method for the static, cyclic, and dynamic response of caisson foundations. The nonlinear soil reactions along the

circumference and on the base of the caisson are modeled realistically by using suitable couple translational and rotational nonlinear interaction

springs and dashpots, which can realistically (even if approximately) model such effects as separation and slippage at the caisson–soil interface,

uplift of the caisson base, radiation damping, stiffness and strength degradation with large number of cycles. The method is implemented in a new

finite difference time-domain code, NL-CAISSON. An efficient numerical methodology is also developed for calibrating the model parameters

using a variety of experimental and analytical data. The necessity for the proposed model arises from the difficulty to predict the large-amplitude

dynamic response of caissons up to failure, statically or dynamically. In a subsequent companion paper [Gerolymos N, Gazetas G. Static and

dynamic response of massive caisson foundations with soil and interface nonlinearities—validation and results. Soil Dyn Earthq Eng; 2005

(submitted companion paper).], the model is validated against in situ medium-scale static load tests and results of 3D finite element analysis. It is

then used to analyse the dynamic response of a laterally loaded caisson considering soil and interface nonlinearities.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

This paper is part of a sequence by the authors dealing

with the lateral response of circular, square and rectangular

shaped rigid caissons. In the first paper [2], a Winkler

model was developed for the dynamic response of a caisson

embedded in an elastic halfspace, and subjected to inertial

and kinematic seismic loading. The Winkler spring stiffness

and damping parameters were obtained by suitably matching

the model response predictions with published results of 3D

wave propagation (elastodynamic) analyses. The major

limitation of that model is that soil nonlinear behaviour

was not been taken into account, and that the caisson

assumed to remain in complete contact with the surrounding

soil (perfect bonding at the boundaries). However, soil–

caisson interaction involves complicated material and

geometric nonlinearities such as soil inelasticity, separation
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(gapping) between the caisson shaft and the soil, slippage at

the soil–caisson shaft interface, base uplifting, and perhaps

even loss of soil strength (e.g. due to development of excess

pore water pressures). Moreover, the waves emanating from

the caisson periphery generate radiation damping which is

strongly influenced by such nonlinearities. The general

problem of a caisson embedded in cohesionless or cohesive

soils and subjected to lateral loading is conceptualized in

the sketch of Fig. 1. With strong interface nonlinearities a

substantially different response emerges.

To compute such nonlinear response (under monotonic and

cyclic deformation), the macroscopic Bouc–Wen (BW) model

[3,4] has been adapted and extended by the authors [5], and is

utilised (as BWGG model) for the normal and shear soil

reactions along the caisson perimeter, and for the moment and

shear reactive forces at the base. A comprehensive method-

ology is developed for identification/calibration of the model

parameters. In the companion paper no. 3 [1], the capability of

the model is investigated through a detailed parametric study,

and its predictions are compared with results of in situ

monotonic caisson load tests.
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Fig. 1. The general problem of a caisson embedded in a cohesionless (left), and in a cohesive (right) soil, and subjected to lateral loading: (a) only soil inelasticity is

involved, and (b) both soil and interface nonlinearities take place. (1) Schematic illustration of the caisson lateral displacement; (2) distributions of the normal and

vertical shear tractions around the caisson section, and (3) stress–displacement hysteretic loops at the perimeter of the caisson.
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2. Physics of the problem and Winkler multi-spring model

The stress reactions against a laterally displacing caisson are

sketched in Fig. 2. The lateral soil resistance (px, resultant per

unit depth) comprises two horizontal stress components: the

radial normal, sr, and the tangential shear, trj, tractions at each

depth of the caisson shaft. Their inter-relationship is:

pxðzÞZ

ð2p

0
ðsrcos jCtrjsin jÞ

B

2
dj (1)

Due to the rotation of the caisson vertical shear stresses

trzZtrz (j) develop along the circumference of the caisson. By

contrast to piles, for which due to their slenderness such

stresses have a negligible effect and are almost invariably

ignored in practice, the relatively large diameter and rigidity of

caissons make the magnitude of such stresses substantial. And

moreover, their contribution to resisting the external loads is

significant. Indeed, at every depth, they produce a resisting

moment mq (per unit depth) about the horizontal axis

perpendicular to the direction of loading and passing through

the center of the caisson cross-section. This moment is
computed as

mqðzÞZ

ð2p

0
trzðjÞ

B

2

� �2

cos jdj (2)

where B is the diameter of the caisson.

On the base, the resultant of the shear tractions that act in the

radial, trz, and in the circumferential, tjz, direction, is given by

Qb Z

ðB=2
0

ð2p

0
ðKtzrcos jCtzjsin jÞrdjdr (3)

Finally, the normal reaction sz acting at the base of the

caisson produce the resisting external moment:

Mb Z

ðB=2
0

ð2p

0
ðszcos jÞr2djdr (4)

In view of all these resisting mechanisms, a static and

dynamic Winkler model is developed incorporating distributed

lateral translational and rotational inelastic springs along the

height of the caisson, and concentrated (resultant) shear and

moment inelastic springs at the base of the caisson. For the

dynamic problem viscoplastic dashpots are attached in-parallel



Fig. 2. Stresses at caisson–soil interface, with circular or square plan shape.
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with each spring. These four types of springs and dashpots

relate the resisting forces acting on the caisson with the

resulting deformations, as follows:

† Nonlinear lateral translational springs and dashpots associ-

ated with the horizontal soil reaction on the side of the

caisson. The separation (gapping) of the caisson from the

soil is also modeled with these springs and dashpots. Their

initial elastic moduli, kx and cx, are determined according to

the companion paper [1].

† Nonlinear rotational springs and dashpots associated with

the moment produced by the vertical shear stresses on the

perimeter of the caisson. Slippage at the caisson–soil

interface is also modelled with these springs and dashpots.

Their initial elastic moduli, kq and cq, are also determined

according to the first companion paper [1]. However, an

important complication arises at large deformations and

near failure conditions: the [ultimate] shear tractions (and

hence the ultimate rotational spring resistance) stem from

the frictional capacity of the interface; as such, they are

directly related to the normal tractions, which however, also

control the horizontal springs. Hence, rotational and

translational spring and dashpot moduli and coupled.

† A nonlinear base shear translational spring and dashpot

associated with the horizontal shearing force on the base of

the caisson. Their initial elastic moduli are Kh and Ch,

determined as for a surface footing on the (underlying the

caisson base) elastic halfspace, according to Ref. [2].

† A nonlinear base rotational spring and dashpot associated

with the moment produced by normal pressures on the base
of the caisson. The uplift at the caisson base is also modeled

by this spring and dashpot. Their initial elastic moduli are

Kr and Cr, determined as for a surface footing on an elastic

halfspace [2]. Again, at ultimate conditions, rotational and

shear springs (and dashpots) at the base are coupled, due to

the frictional nature of the shearing resistance and hence its

dependence on the rotation-related sz.

The proposed nonlinear Winkler model is illustrated

schematically in Fig. 3.

3. The model: constitutive equations

The lateral soil reaction px given in Eq. (1) is expressed as

the sum of two components, the hysteretic, ps, and the

viscoplastic, pd:

px Z ps Cpd (5)

The constitutive relationship for ps is expressed in the

Bouc–Wen fashion [3,4] as

ps ZaxkxuC ð1KaxÞpyzx (6)

in which: ps is the resultant in the direction of loading of the

normal and shear tractions along the perimeter of the caisson of

a unit thickness, u is the horizontal displacement of the caisson

at the location of the spring; kx is the initial stiffness of the

translational spring; ax is a parameter that controls the post-

yield stiffness; py is the ultimate soil reaction; and zx is a

hysteretic dimensionless quantity controlling the nonlinear

behaviour of the lateral soil reaction. The latter is governed by



Fig. 3. Nonlinear Winkler model for the analysis of laterally loaded caissons.
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the following differential equation with respect to time, t

dzx
dt

Z lx
hx
uy

du

dt
Kð1CrxÞ bx

du

dt
jzxj

nx Cgxj
du

dt
jjzxj

nxK1
zx

� �� �
(7)

where

hx hhxðzxÞZ 1Kz0exp K
uyzx

dD

� �2� �
(8)

is the ‘pinching factor’, for modeling the effect of the gap

formation.

In the above equations bx, gx, nx, lx, rx, z0, d, and D are

dimensionless quantities which control the shape of the

monotonic (backbone) curve, and of the hysteresis loop of

the lateral soil reaction versus caisson deflection; uyZpy/kx is

the value of lateral displacement at initiation of yielding in the

soil at the specific depth. The exact role of each of the above

parameters is illustrated in the sequel.

The original idea of the form of Eqs. (6) and (7) was

proposed by Bouc [3] and was subsequently extended by Wen

[4] and used extensively especially in studies of inelastic

structural systems. The form of Eqs. (7) and (8) was developed

specifically for the caisson problem studied in this paper. Eq.

(7) can be rewritten in an incremental dzKdu form by

eliminating t:

dzx Z
lxhx
uy

f1Kð1CrxÞjzxj
nx ½bx CgxsignðduzxÞ�gdu (9)

It is evident that Eq. (9) is of hysteretic rather than viscous

type. This means that its solution is not frequency dependent.
Different numerical integration techniques can be utilized to

solve Eq. (9) such as the central finite difference and the Range-

Kutta methods. The explicit scheme of the finite difference

method is more suitable when Eq. (9) is to be solved in

conjunction with the system (e.g. pile–soil or caisson–soil)

equilibrium equations, under the condition that the size of the

time step is sufficiently small.

The lateral reaction resulting from the viscoplastic dashpot

is given by

pd Z cx
vu

vt
ax C ð1KaxÞ

vzx

vu

� �cxd

(10)

where cx is the dashpot coefficient at small amplitude motions,

and cxd is a viscoplastic parameter which controls the coupling

of soil and soil–caisson interface nonlinearity with radiation

damping.

As with the lateral reaction, px, the resisting moment per

unit depth, mq, given in Eq. (2), is expressed as the resultant of

the hysteretic, ms, and the viscoplastic, md,component

mq Zms Cmd (11)

where

ms Zmyzq (12)

in which my is the ultimate resisting moment at initiation of

slippage at the soil–caisson interface at the specific depth. my

depends on the lateral soil reaction ps, given in Eq. (6), which

varies with time. A methodology for calibrating my is presented

in the sequel. zq is the hysteretic dimensionless rotation that

controls the nonlinear response of the resisting moment (per
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unit depth). The latter is governed by the following differential

equation

dzq
dt

Z lq
1

qy

dq

dt
Kð1CrqÞ bq

dq

dt
jzqj

nq Cgq
dq

dt

����
����jzqjnqK1

zq

� �� �
(13)

In which q is the rotation of the caisson, bq, gq, nq, lq, and rq
are dimensionless quantities which control the shape of the

lateral soil reaction versus caisson-deflection hysteresis loop;

qy is the value of caisson rotation at initiation of slippage at the

soil–caisson interface, expressed as a function of the initial

stiffness of the rotational spring

qy Z
my

kq
(14)

Eq. (13) is similar in form with Eq. (7) except that there is no

term equivalent to hx.

The viscoplastic component of the resisting moment due to

radiation damping is described as

md Z cq
vq

vt
aq C ð1KaqÞ

vzq

vu

� �cqd

(15)

where cq is the damping coefficient at small amplitude motions,

and cqd is a viscoplastic parameter which controls the coupling

of soil inelasticity and slippage at the soil–caisson interface,

with radiation damping. It is obvious from Eq. (15) that when

sliding occurs the term inside the brackets vanishes, and so

does therefore md. This means that the system generates no

radiation damping from rotational oscillation when slippage at

soil–caisson interface takes place—a realistic outcome.

As with px and mq, the shear force Qb and overturning

moment Mb at the caisson base, given in Eqs. (3) and (4)

respectively, are expressed as

Qb ZQbs CQbd (16)

and

Mb ZMbs CMbd (17)

in which the hysteretic components Qbs and Mbs are given by

Qbs ZQbyzh (18)
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Fig. 4. Normalized soil reaction–caisson displacement curves to monotonic loadin

caissons. aZ0 and 0.1.
and

Mbs ZarKrqC ð1KarÞMbyzr (19)

The hysteretic quantities zh and zr are the solutions of

differential equations of identical form as Eqs. (7) and (13)

with their own constants and the following meaning of the

yield displacement and rotation: ubyZQby/Kh and qbyZMby/Kr.

Radiation damping components Qbd and Mbd are also governed

by equations analogous to Eqs. (10) and (15), respectively.

A delicate point that deserves some discussion is that the

resisting stresses acting on the caisson base are represented by

springs and dashpots concentrated at the centre of the base.

However, the pivot point of an oscillating caisson free to rock

on a rigid base alternates between the two corner points.

Consider for instance that uplifting has occurred at a certain

moment in time. Upon re-attachment of the free portion of the

base, new forces participate in the dynamic equilibrium and

one is expecting the need of a balance of momentum equation

[25]. The problem becomes more complex when the caisson is

supported on a deformable soil where a smooth transition of the

pivot point between the two corners takes place. As it is shown

in the sequel, the influence of the pivot point alteration on the

resisting forces is implicitly considered with our nonlinear

‘springs’, through the appropriate calibration of the model

parameters. Calibration is achieved against results of 3D finite

element analysis using the methodology presented in a

subsequent section. This is a ‘macro-element’ type of

approach, capturing the overall caisson base response. A

similar in concept macro-element has also been developed by

Cremer et al. [26] in modelling the dynamic behaviour of a

shallow strip foundation under seismic action.

Eqs. (6)–(8) are a generalization and extension of a model

originally proposed by Bouc [3] subsequently extended by

Wen [4], Baber and Wen [7] and Baber and Noori [8], and used

extensively in random vibration studies of degrading-pinching

inelastic structural systems, and later in modeling the response

of seismic isolation bearings [9]. Applications in soil dynamics

include the probabilistic soil response studies by Pires [10],

Loh et al. [11] and Gerolymos and Gazetas [5,6]. To our

knowledge the first application to soil–pile interaction

problems under static condition was made by Trochanis et al.
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[12], and under dynamic loads by Badoni and Makris [13] and

Gerolymos and Gazetas [6].

A methodology is developed in the sequel for calibrating the

parameters of the model. Special attention is given to modeling

the separation and slippage at the caisson–soil interface, as well

as the base uplifting.
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caissons (smooth lines), and proposed by Reese and Matlock [14,15] (three
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4. Key parameters and capabilities of the model

For a better understanding of the constitutive relations used

in modeling caisson–soil interaction to lateral loading, a brief

outline is presented herein of the parameters, capabilities, and

limitations of the model.

4.1. Parameters for monotonic loading

The parameter n (nx for the lateral soil reaction, and nq for

the resisting moment, per unit depth) controls the rate of

transition from the elastic to the yield state. A large value of n

(greater than 10) models approximately a bilinear hysteretic

curve; decreasing values of n lead to smoother transitions

where plastic deformation occurs even at low loading levels.

Fig. 4 illustrates the role of n on the monotonic loading curve.

The parameter a (ax for the lateral soil reaction, and aq for

the resisting moment, per unit depth) is the ratio of post-yield to

initial elastic stiffness. Monotonic loading curves for different

values of a and for constant value of n are presented in Fig. 5.

The parameters n and a are properly calibrated to matching any

lateral ‘pKy’ and vertical ‘tKz’ curve, such as those proposed

by Matlock [14] and Reese [15] for piles Fig. 6.

4.2. Parameters for unloading–reloading

Parameters b (bs for the horizontal reaction, bq for the

resisting moment, per unit depth, and br for the base moment)

and g (gx, gq, and gr) control the shape of the unloading–

reloading curve. As is shown in Fig. 7 there are four basic

hysteretic shapes depending on the relation between b and g.

When bZgZ0.5, the stiffness upon reversal equals the initial

stiffness, and the Masing criterion is recovered. In the special

case bZ1 and gZ0, the hysteretic loop collapses to the

monotonic loading curve (nonlinear but elastic behavior,
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appropriate for geometric nonlinearities but not for material

nonlinearity).
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Fig. 8. Effect of parameter l on force–displacement hysteresis loops.
4.3. Parameters for stiffness and strength degradation with

cyclic loading

The model can reproduce stiffness and strength degrading

behavior. Stiffness decay is controlled by the parameter l (lx,

lq and lr). Prescribing l to be an increasing function of time

will model stiffness decay. l can be expressed as a function of

the dissipated hysteretic energy and/or the cumulative

displacement or rotation ductility. Its influence on the

hysteretic loops is depicted in Fig. 8. The proposed model

could also simulate strength degradation with cyclic loading.

This is achieved with parameter r (rx, rq, and rr). Increasing r,

reduces the soil strength in proportion to (1Cr). Parameter r

can be prescribed as an increasing function of dissipated

energy, according to

rxðtÞZ b½ð1KaxÞpy

ðt
0
zxðu; tÞ _uðtÞdt�

g (20)

where b and g are parameters determined from experimental

data. As an example of the capabilities of the model, Fig. 9

depicts hysteresis loops of lateral soil reaction versus

displacement, for a caisson in stiff clay experiencing gapping

and displacement-controlled strength degradation.
4.4. Parameters for separation and slippage between caisson

and soil

Gap opening up around the caisson (particularly significant

with stiff clays), and slippage at the soil–caisson interface

(significant for both sands and clays), are treated as coupled

phenomena. Gapping is implemented through the pinching

function hxZhx(zx) given in Eq. (8). The continuous nature of

the pinching function produces smooth hysteresis loops with

gradual transition from almost zero to maximum stiffness. The

parameter d in Eq. (8) controls the gap growth during the
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response of the caisson, while the parameter z0 controls the

‘sharpness’ of the separation. In this equation, D is either the

maximum or the minimum attained displacement, depending

on whether the displacement u is positive or negative,

respectively. In the absence of experimental data, the

calibration of parameters z0 and d should be based on the

following rule

zxðtÞZ
0; KDðtÞ!uðtÞ!DðtÞ

1; uðtÞZDðtÞ

(
(21)

It has been found that for z0Z0.99 and dZ0.054, the above

criterion is approximately fulfilled. Fig. 10 portrays a lateral

soil reaction versus displacement loop with gapping effect,

computed from the system of Eqs. (6)–(8), and (21).

Having calibrated the parameters of the pinching function,

hx, the next step should be to determine the conditions under

which separation occurs. Two conditions must be satisfied

simultaneously: (i) the lateral extensional stress ps [Eq. (6)] at a

particular depth on the interface becomes larger than the

compressive horizontal earth pressure at rest, sh0, and (ii) the

cavity formed around the caisson is stable. Mathematically,

separation occurs when
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Fig. 10. Simulation with the proposed model of the hysteretic component of soil

reaction on a caisson experiencing gapping.
sh0B! jpsj

sh0! f ðc;4Þ

(
(22)

in which f(c,f) is a function of the soil strength parameters (cZ
the cohesion, and fZthe friction angle) related to the stability

of the cavity. In the absence of a more rigorous solution, f(c,f)

can be derived through the application of cavity expansion

theory [16]. For example, for soil obeying the Mohr–Coulomb

yielding criterion,

f ðc;4ÞZ
2c cos 4

ð1Ksin 4Þð3K0K1Þ
(23)

where K0 is coefficient of earth pressure at rest.

Slippage occurs when the shear stress at the interface

becomes larger than the ultimate shear stress (friction). The

developed shear stress

tr Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2
ry Ct2

rz

q
(24)

is the resultant of the horizontal component trj which

contributes to the lateral soil reaction, ps, and the vertical

component trz which contributes to the resisting moment, ms,

per unit depth. The ultimate shear stress Mohr–Coulomb yield

criterion. Summarising, for initiation of slippage at a particular

depth, the following rule must be satisfied at every point of the

interface

jtrjZ cint C ðsh0 C jsrjÞtan dint (25)

where dint is the peak friction angle between caisson and soil.

Once slippage has occurred, Eq. (25) transforms to

jtrjZ ðsh0 C jsrjÞtan dint; res (26)

in which dint,res is the residual friction angle at the interface

(residual cohesionz0). Finally, during separation of the

caisson from the soil the shear stresses vanish (trZ0). The

method to relate the ultimate shear stress with the ultimate

resisting moment my, which is an important consideration of

the proposed model for caissons, is presented in the sequel.

4.5. Parameters for caisson base uplifting

Base uplifting may have an appreciable effect on the

dynamics of caisson foundations. For relatively shallow

caissons in which the base contributes significantly to the

overall stiffness of the foundation, uplifting may even dominate

the response. The problem becomes more complicated due to

the interplay between base uplifting and plastification of the

underlying soil. This interplay is elucidated with the help of

Fig. 11.

The problem shown in this figure is that of a circular footing

supported on clay of constant undrained shear strength with

depth. The footing is subjected to monotonic moment loading

M at its center under constant vertical load N, until the

complete failure of the footing–soil system. The figure shows

comparison between M–q monotonic curves computed with 3D

finite element analysis [27] and predicted with the proposed

model with appropriate calibration of parameter nr. The
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finite element analysis (triangles and circles, Gazetas and Apostolou 2004). (b–d) Associated to the interaction diagrams M–q curves, computed from the proposed

model for caissons (solid lines) and derived from finite element analysis (dotted lines, Gazetas and Apostolou 2004). The curves correspond to factors of safety for

central static vertical loading, FSZ8 (circle 1), 2.1 (circle 2),and 1.3 (circle 3). The negative post-yielding slope of the M–q curves computed with the finite element

model, is due to the PKd effect.
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monotonic M–q curves correspond to specific points on the

vertical force–moment interaction diagram of the footing,

calculated with the finite element model, also shown in the

same figure. Each of the three points is associated with a

different factor of safety (under static vertical loading): FSZ
8.0, 2.1, and 1.3.

As shown in this figure, the transition from the elastic to the

fully plastic region is smoother for curves corresponding to

small factors of static safety, say FS!2, where the soil

plastification dominates, than those for FSO2 where uplifting

dominates. In the case of an almost rigid foundation soil, the

M–q curve approaches a bilinear (but elastic) behaviour (with a

horizontal branch). Summarizing, parameter nr can be

expressed as an increasing function of the static safety factor

to vertical loading. In the absence of results from a push-over

analysis, the following guidelines for calibrating nr are

appropriate: for large values of the factor of safety (f.e. FSO
10), nr shall be taken equal to 10. For values of FSZ8, FSZ2

and FSZ1, nr is taken equal to 3, 1.5 and 0.5, respectively. For
intermediate values of the factor of safety a linear interpolation

would suffice.

The next step is to calibrate the parameter br for matching

the observed unloading–reloading behaviour. To this end,

Fig. 12 presents a qualitative comparison between experimen-

tal and calculated M–q hysteresis loops for a soil–footing

system. Three particular cases of the soil–footing system are

examined. Cases (a) and (c) are the two extremes: (a) of a very

hard foundation soil, or alternatively of a footing with large

static factor of safety (e.g. FSO8), and (c) of very soft

foundation soil, or alternatively a footing with small factor of

safety (e.g. FS!2). Case (b) is intermediate: of a medium stiff

foundation soil, or alternatively of a footing with a factor of

safety between 2 and 4—as is most frequently the case in

practice.

Rotation of the footing in case (a) is possible only after

uplifting initiates (with or without structural yielding).

The corresponding M–q curves for several cycles of loading–

unloading–reloading practically coincide with the monotonic



Fig. 12. Experimental and calculated moment–rotation (M–q) hysteresis loops of a soil–footing interaction system. (a) Uplift on very stiff soil accompanied with

slight structural yielding. (b) Uplifting with limited soil plastification; uplift is the prevailing failure mechanism, and (c) uplifting with extensive soil plastification;

soil yielding is the predominant failure mechanism. The comparison between experimental M–q loops and those calculated with the proposed model for caissons is

only qualitative.
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curve—indicative of nonlinear but elastic behavior. Such a

behavior is the result of geometric (not material) nonlinearity.

The tiny hysteresis loops in the experiment are due to some

structural yielding in the footing; such yielding is unlikely to

occur with the caisson—hence the single M–q line of the

calculated response (for nrZ10).

The behaviour of case (c), footing on very soft soil, is

typical of cyclic behaviour dominated by extensive soil

plastification with minimal uplifting. Bearing capacity excee-

dance mechanisms are mobilized alternately under the two

edges of the footing, in each direction of loading. Naturally,

hysteresis loops are now substantial, reflecting the hysteretic

energy dissipation in the soil.

For the intermediate case (b), the M–q response reveals that

both nonlinear-elastic base uplifting and inelastic soil

plastification take place simultaneously. The hysteresis loops

are of moderate size reflecting a moderate degree of hysteretic

dissipation of energy in soil. It is interesting to observe in the

plots of this figure that the stiffer is the foundation soil, the

milder is the reversal stiffness of the soil-foundation system,

and the narrower is the corresponding hysteretic loop. This

type of behaviour is quite realistically captured with the

proposed model, by expressing parameter br as an increasing

function of the static vertical factor of safety against bearing
capacity failure. Note also that the reversal stiffness becomes

milder as the amplitude of the imposed rotation increases. This

can also be modeled by expressing the parameter lr as a

decreasing function of the rotation ‘ductility’ (q/qy).
4.6. Stiffness parameters

The methodology for calculating the small-amplitude

subgrade moduli of the distributed (along the height of the

caisson) and the concentrated (at the base of the caisson)

springs, as well as the dashpot coefficients, is discussed

thoroughly in the companion paper [1]. For example, the

translational and rotational distributed static spring stiffnesses

for a cylindrical-shaped caisson are

kx Z 1:60
D

B

� �K0:13

Es (27)

and

kq Z 0:85
D

B

� �K1:71

EsD
2 (28)

while the concentrated springs at the base are obtained without

modification from the theory of surface foundations on
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homogeneous half-space [28–30]

Kh Z
2EsB

ð2KvsÞð1CvsÞ
(29)

and,

Kr Z
EsB

3

1Kv2
s

(30)

accepting the theoretical (numerically verified) arguments by

Randolph and Wroth [31].
4.7. Parameters of ultimate resistance
4.7.1. Along the caisson shaft

A methodology is presented in this section for calculating:

(i) the ultimate lateral soil reaction py and ultimate resisting

moment my, per unit depth along the caisson, and (ii) the shear

Qy and moment My capacities at the base of the caisson.

Referring to Fig. 2 and to Eq. (1), the real part of ps of the

lateral soil reaction px is composed of two components as

follows

ps Z pn Cpt (31)

where pn and pt are the integrated resultants of the normal and

horizontal shearing stresses, respectively, acting on the

periphery of the caisson. Assuming that contact between

caisson and soil is not maintained on the back side of the

caisson at a specific depth

pn Z

ðp=2
Kp=2

sr
B

2
cos jdj (32)

and

pt Z

ðp=2
Kp=2

trj
B

2
sin jdj (33)

The ultimate resisting moment per unit depth, my, is

expressed as a function of pn according to

my Z ðcintBC jpnjtan dintÞ
B

2
(34)

For the distribution of the normal stress, sr, a cosine

function is adopted for the variation around the circumference

sr Z sr0cos j (35)

where sr0 is the amplitude at jZ0. Substitution of Eq. (35) into

Eq. (32) yields

pn Z
p

4
Bsr0 (36)

Referring to Eq. (25) and setting sh0Z0, the ultimate shear

strength at the caisson–soil interface is

tr Z cint Csrtan dint (37)

Since at failure it is the magnitude of the vector resultant of

trj and trz that must equal the limiting, tr, the following

distributions have been assigned as a first approximation to
these stresses

trj Z trsin j (38)

and

trz Z trcos j (39)

Substituting Eqs. (35), (37), and (38) into Eq. (33) yields

pt Z
pcint

4
C

1

3
sr0tan dint

� �
B (40)

Comparing Eq. (40) with Eq. (36) for typical values of cint

and dint, reveals that pt is only a small fraction (15–20%) of the

lateral soil reaction ps. Accordingly, in Eq. (34) pn could be

replaced with ps, without any significant loss of engineering

accuracy.

A variety of analytical or semi-analytical expressions can be

adopted to estimate the ultimate lateral soil reaction py. Among

others, Duncan and Evans [17] recommended the following

approximate equation for the maximum (passive) lateral

resistance of cKf soils, which is the most preferred in

practice, thanks to its simplicity and compatibility with

experimental results

py ZCp 2c tan 45C
4

2

� �
Cgsz tan2 45C

4

2

� �h i
B (41)

in which Cp is the correction factor accounting for the 3D effect

of the passive wedge formed in front of the caisson,

Cp Z
1:5; 0!4!158

4=10; 4R158

(
(42)

The reader should recall that for laterally loaded piles, the

widely adopted value for Cp is 3 [18].
4.7.2. At the caisson base

The second task of this section is to determine the moment

capacity Mby at the base of the caisson. This can be achieved

through three different alternative approaches: (i) with an

elastoplastic Winkler spring model, (ii) with a 3D finite

element elastoplastic analysis, and (iii) with the results of

experimental (centrifuge or medium- and large-scale) tests.

The result of such analyses are cast in the form of ‘interaction’

curves for combined ultimate (Mu, Qu, Nu) loading (‘failure

equations’).

With the Winkler model, the FEMA manual 273/274 [19]

and Allotey et al [20] give

Mbyz
Nb

2
BK

Nb

qult

� �
(43)

where Nb is the vertical force acting on the caisson base, and

qult is the ultimate bearing pressure of a surface foundation

supported on a soil with the properties of the actual soil below

the base of the caisson, in central loading.

With a 3D finite element elastoplastic analysis for circular

foundations with uplift, Taiebat and Carter [21] as well as

Murff [22], Bransby and Randolph [23], developed the
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following ‘interaction’ equation,

2Nb

Nbu

K1

� �2

C
Mby

Mbu

� �2

K1 Z 0 (44)

in which Nbu(Zqult!base area) and Mbu are the ultimate

vertical force and overturning moment, respectively, at the

caisson base [24]. Closed-form solutions are not provided for

Mbu in the literature, except for the interesting particular case

of circular foundation on undrained clay, for which Taiebat and

Carter [21] derived the following expression

Mbu Z
p

5
B3Su (45)

in which Su is the clay undrained shear strength. Eq. (45) is

alternatively derived from Eq. (4) by assuming sinusoidal

distribution of the normal stress sz, and setting its maximum

value, sz0, equal to 5Su which is approximately the bearing

capacity of circular footing. Substituting Eq. (45) into Eq. (44),

leads to

Mby Z
p

5
B3Su

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1K

2Nb

Nbu

K1

� �2
s

(46)

Evidently, to calculate Mby from Eq. (46) the vertical load

acting at the caisson base Nb should be known. Nb is only a

fraction of the external vertical load N0 applied atop the

caisson. A substantial part of N0 is undertaken by the sidewalls.

We propose that Nb could be estimated from the following self-

explanatory expression

NbzN0Kmin
Kz; embKKz; sur

Kz; emp

N0;pDBtu

� �
(47)

in which Kz,emb and Kz,sur are the vertical stiffnesses of the

caisson and the caisson base, respectively, and tu the ultimate

shear resistance mobilized at the caisson perimeter, in vertical

loading. (For clay under undrained conditions, tu, is a fraction,

b, of the undrained shear strength Su; usually 0.25!b!1

depending mainly on the value of Su itself.)

Shear failure at the base of the caisson is usually

characterized by sliding at the base–soil interface rather than
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failure of the foundation soil, Qby is therefore estimated as

Qby ZNbtan 4b (48)

where fb is the angle of friction at the soil–base interface.
4.8. Parameters for radiation damping (viscoplastic approach)

The proposed model is capable of capturing the (unavoid-

able) coupling between hysteretic and radiation damping with a

certain degree of realism. As shown in Eqs. (10) and (15), the

dashpot force is expressed as a function of the first derivative of

zx (or zq) with respect to caisson displacement u (or rotation q),

which controls the soil hysteretic response around the pile. The

viscoplastic parameters cxd and cqd, controlling the influence of

soil hysteretic response on radiation damping, range from 0 to

0.5. When cxd (or cqd)Z0, then Eqs. (10) and (15) reduce to the

linear (small-amplitude) dashpot equation

pd Z cx
vu

vt
(49)

and

md Z cq
vq

vt
(50)

The larger the value of cs, the more representative the

dashpot for soil–pile interaction when high-frequency waves

are emitted from the pile periphery. Fig. 13 shows typical loops

of soil reaction (normalized to the ultimate soil resistance py),

versus caisson displacement (normalized to the yield displace-

ment uy), computed with the proposed model for different

values of parameter cxd. The associated viscoplastic com-

ponents are also presented in this figure. Similar curves for soil

reaction with gapping effect are depicted in Fig. 14. Notice the

profound reduction in radiation damping either when gapping

occurs, or when the ultimate soil resistance is being reached.

Paradoxically, the opposite is observed when a purely

viscoelastic approach for the radiation damping is adopted

(cxdZ0).
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5. Conclusion

A nonlinear Winkler model is presented for the static and

inertial response of rigid caisson foundations. The model is an

extension of the four-type spring model for the elastic response

analysis of caissons, outlined in Part I article. To model the

nonlinear reaction of the soil with realism we develop the

‘BWGG interaction springs and dashpots’ model, which can

capture such effects as: soil failure, separation and gapping of

the caisson from the soil, radiation damping, and loss of

strength and stiffness (e.g. due to material softening and/or

pore-water pressure generation). The coupling of hysteretic

and radiation damping is also modeled in a realistically

simplified way. A simplified but efficient methodology is then

developed for calibrating the model parameters.
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