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Kinematic seismic response and bending of free-head piles in 
layered soil 

M. KAVVADAS and G. GAZETASt 

The paper studies the kinematic response of free- 
head piles. Such pile deformation has triggered 
structural damage in many strong earthquakes. In 
this Paper dimensionless parametric graphs for 
pile bending moments are presented which pertain 
to characteristic two-layer soil profiles. The results 
are derived by using an existing rigorous dynamic 
finite-element code, and by implementing a realistic 
beam-on-dynamic-Winkler-foundation formulation 
specifically developed for the kinematic response of 
piles in layered soil. The Winkler model is shown 
to reproduce quantitatively even detailed trends 
observed in the finite-element results; a simple 
analytical expression is thereby developed for esti- 
mating the Winkler stiffhess in terms of the local 
soil Young’s modulus and key dimensionless pile/ 
soil parameters. The study concludes that even 
relatively flexible piles may not exactly experience 
the wavy and abruptly changing ground deforma- 
tion of the free field. The critical region of pile dis- 
tress due to such kinematic loading is shown to he 
at or near the interface between alternating soft 
and stiff soil layers. The magnitude of the bending 
moment at such critical interface locations depends 
mainly on the stiffness contrast of the two layers 
through which the pile penetrates, the excitation 
frequency and the relative rigidity of the pile. A 
constraining cap may exert an important effect on 
such kinematic deformations. 

KEYWORDS: dynamics; earthquakes; numerical mod- 
elling and analysis; piles; soil-structure interaction. 

L’article Ctudie la r+onse cinbmatique de pieux $ 
tCte-lihre. La deformation de ces pieux a en effet 
occasionni des endommagements structuraux lors 
de nomhreux tremhlements de terre de forte ampli- 
tude. L’article propose des graphiques $ para- 
mi?tres adimensionnels permettant de calculer le 
moment flM&sant des pieux et de caracteriser des 
sols bicouches. Les rbultats sont calculis P I’aide 
d’un code dynamique d’&!ments finis, prkxistant 
et rigoureux, et d’une formulation rCaliste de 
“Beam-on-Dynamic-Winkler-Foundation” sp&ia- 
lement mise en oeuvre pour la rkponse cinkmatique 
des pieux dans des sols stratifib. Le modele de 
Winkler permet de reproduire les tendances, mdme 
trb dBtaillCes, des r&.ultats obtenus par klements 
finis. Une expression analytique simple est alors 
d&elop$e. Elle permet d’estimer la raideur de 
Winkler en terme de module de Young local du sol 
et de param&tres clb adimensionnel pieu/sol. 
L’btude montre que m&me les pieux relativement 
flexihles ne supportent pas totalement une d&for- 
mation rapide et odulante du terrain. La zone cri- 
tique des pieux sinistr6s rbultant d’un tel 
chargement cinkmatique se trouve au niveau ou I 
proximitC de I’interface sol souple/sol rigide. 
L’amplitude du moment flbhissant au niveau de 
ces interfaces critiques dCpend principalement du 
contraste de raideur existant entre les deux 
couches traver&s par le pieu, de la frCquence 
d’excitation et de la rigiditi! relative du pieu. Un 
capuchon de mise sous contrainte pourrait avoir un 
effet important sur de telles deformations cinCma- 
tiques. 

INTRODUCTION 

Pile distress and failure during seismic shaking, 
although difficult to observe in post-earthquake 
site investigations, have been well documented. 
For example, Mizuno (1987) has reported on 28 
cases involving seismic pile failures in Japan, 
EEFIT (1986) has described cases of pile extru- 
sion in Mexico City during the 1985 earthquake, 
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CNEL-ENEL (1976) has documented pile rup- 
tures under two bridges in the Friuli (Italy) 1976 
earthquake and Ross, Seed & Migliaccio (1969) 
have described numerous failures of piles sup- 
porting bridge and harbour facilities in the 1964 
Alaska earthquake. 

Mizuno (1987), in summarizing the Japanese 
experience with regard to the likely causes and 
different types of pile failure, has concluded that 
many of the failures arose from the transmission 
onto the foundation of large inertia forces/ 
moments developing in the superstructure: such 
failures take the form of either shear/bending 
cracking and rupturing beneath the head of the 
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pile or of the ultimate tension capacity of the 
soil-pile-cap system being exceeded. Lique- 
faction-induced failures have also been frequent 
and spectacular. However, in several cases the 
location of pile failure was too deep to be caused 
by loading from the top (due to structural 
inertia), while liquefaction could not possibly 
have occurred; damage was in fact associated 
with the presence of discontinuities in strength 
and stiffness of the soil profile. The most likely 
cause is the relatively large curvatures imposed 
by the surrounding soil as it deforms while 
excited by up and down (after reflection) propa- 
gating seismic waves. 

This mode of deformation and potential failure 
has not received proper attention: in fact, engi- 
neers usually ignore the problem altogether and 
design the piled foundation merely against head 
loading. However, some theoretical work has 
been published on the kinematic response of piles 
(Penzien, 1970; Tajimi, 1969, 1977; Kagawa & 
Kraft, 1981; Takemiya & Yamada, 1981; Kobori, 
Minai & Baba, 1981; Wolf & Von Arx, 1982; 
Flores-Berrones & Whitman, 1982; Kaynia & 
Kausel, 1982; Gazetas, 1984; Barghouthi, 1984; 
Dennehy & Gazetas, 1985; Tazoh, Wakahara, 
Shimizu & Matsuzaki (1988); Nogami, Jones & 
Mosher, 1991; Ahmad & Mamoon, 1991; Masay- 
uki & Shoichi, 1991). A comprehensive survey of 
the dynamic and seismic response of piles has 
been presented by Novak (1991). Moreover, 
recent seismic codes and seismic guidelines have 
recognized the importance of this type of loading 
(AASHTO, 1983; JSCE, 1988; AFPS, 1990; 
Eurocode EC8, 1990). For example, the first draft 
of Part 5 of the Eurocode states that: ‘Piles shall 
be designed for the following two loading condi- 
tions: 

(4 

(4 

inertia forces on the superstructure transmit- 
ted onto the heads of the piles in the form of 
an axial force, a horizontal force and a 
moment.. in determining displacements and 
rotations resulting from these forces, the soil 
is considered as deforming only due to the 
transmitted actions.. . . 
soil deformations arising from the passage of 
seismic waves which impose curvatures and 
thereby lateral strain on the piles along their 
whole length.. . . such kinematic loading may 
be particularly large at interfaces of soil layers 
with sharply differing shear moduli. The 
design must ensure that no ‘plastic hinge’ 
develops at such locations.. .’ 

While there is ample geotechnical experience of 
carrying out the equivalent static analysis for the 
inertial loading (type (a)), no specific method is 
proposed (let alone required) in EC8 or the other 
codes referred to in this Paper to predict defor- 

mations and bending moments from the kine- 
matic loading (type (b)). Moreover, a search of the 
literature cited above shows that published infor- 
mation on kinematic bending moments (rather 
than pile-head deflexions) is so limited, even for 
the simplest case of a homogeneous soil profile, 
that the engineer cannot readily assess even their 
order of magnitude. Recourse to sophisticated 
methods that are not widely available is a neces- 
sary but unattractive alternative. This Paper is 
intended to bridge the apparent gap in both 
theory and practice of the seismic analysis/design 
in two ways. 

First, an extensive parametric study is presen- 
ted on the kinematic response of a single free- 
head pile to vertically-incident harmonic shear 
waves (S-waves). The study, conducted using an 
expanded version of the dynamic finite element 
formulation developed by Blaney, Kausel & 
Roesset (1976), concentrates on a two-layer 
profile which can represent two characteristic 
cases: a stiff crust underlain by a softer layer, and 
a soft surficial layer underlain by a stiff soil 
stratum into which the pile is embedded. The 
results of the study are presented in dimensionless 
graphs, which are useful not only for development 
of an improved understanding of the mechanics 
of the problem and checking of the accuracy of 
less rigorous solutions, but also for preliminary 
design estimates. 

Second, a beam-on-dynamic-Winkler-founda- 
tion (BDWF) formulation is developed that can 
be readily used in practical seismic design of piles 
in layered profiles. Described through rationally- 
derived ‘springs’ and frequency-dependent ‘dash- 
pots’, this BDWF model is shown to accord with 
the rigorous finite element (FE) predictions of 
both deflexions and bending moments: maximum 
deviation of 15% under the most adverse condi- 
tions of geometry, soil parameters and excitation 
frequency. The BDWF spring stiffness is evalu- 
ated using a proposed simple analytical expres- 
sion in terms of key dimensionless problem 
parameters. The merits of the proposed model 
include the familiarity of geotechnical engineers 
with (linear and non-linear) beam-on-winkler- 
foundation-type models and its clear computa- 
tional advantage (a difference of at least a factor 
of 100) over the rigorous continuum-type solu- 
tions. 

PROBLEM DEFINITION AND PARAMETRIC 
RESULTS 

The system studied refers to an end-bearing 
pile embedded in a two-layer soil deposit (Fig. l), 
underlain by rigid bedrock and subjected to verti- 
cally propagating S-waves. Such waves produce 
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Pile: 

S-wave velocity 
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Case: A B C DIE. G 

Fig. 1. Two-layer soil profiles under study 

horizontal harmonic motion 

u,(r) = U, egot 

at the bottom of the lower layer. 

(1) 

The soil is assumed to be a linearly-hysteretic 
solid with Young’s modulus E, or E,, damping 
ratio j?. = & = 10% (appropriate for moderately 
strong shaking), mass density pa = pb, and 
Poisson’s ratio v, = v,, = 0.40. The pile is a 
linearly-hysteretic beam with Young’s modulus 
E,, bending moment of inertia I,, damping ratio 
/?, = 5% and mass density pp = 1.60 pa. The Ber- 
noulli assumption for a beam (plane sections 
remain plane and perpendicular to its neutral 
axis) results in the horizontal pile displacement 
u&z, t) being the only independent variable of pile 
deformation. To reduce the required number of 
analyses (without loss of insight), only the follow- 
ing crucial dimensionless parameters are varied: 
the pile-to-soil stiffness ratio E,/E,, the ratio of 
the S-wave velocities VJV, of the two soil layers, 
the pile slenderness ratio L/d, the ratio of the 
thicknesses of the soil layers Ha/H,, and the ratio 
w/w1 of the excitation frequency to the funda- 
mental natural frequency of the ‘free’ (i.e. without 
piles) soil deposit in vertical S-waves. 

The sensitivity of bending moments to varia- 
tion in the values of Poisson’s ratios v, and v,, is 
also explored. As anticipated in a linear analysis, 
all computed deformation and stress quantities 
are proportional to the excitation intensity, 
expressed by the amplitude of bedrock dis- 
placement U, or the amplitude of bedrock accel- 
eration Ui, = w2U,. Results are presented for 

normalized bending moments and shear forces 

$j= 
M 

Ppd”ii8 

&L 
ppd3ii, 

(24 

while deflexions are normalized by U,. The pre- 
vious normalized quantities were obtained by a 
formal dimensional analysis of the governing dif- 
ferential equations. 

The fundamental characteristics of the soil and 
pile response to harmonic base excitation are 
investigated by analysis of two series of systems: 
series 1 (Table 1) is used to study the effect of the 
soil S-wave velocity ratio V,/V,, series 2 (Table 1) 
is used to study the effect of the pile slenderness 
ratio L/d. The selected cases, which cover a wide 
range of possible two-layer profiles, help to inves- 
tigate the effect of the layer interface on pile 
bending moments and shear forces for highly con- 
trasting soil properties and various pile slender- 
ness ratios. 

Figure 2(a) shows the distribution with depth 
of the displacement amplitudes in the soil (free 
field) Ur,, and the pile, U, (normalized with the 
common pile and soil displacement at bedrock 
level) at the natural frequency of the deposit. 
Only the two extreme S-wave velocity ratio cases 
are studied: case A (stiff upper crust) and case D 
(very soft upper layer). As expected, amplification 
of the motion occurs almost exclusively in the 
softer layer, while the pile follows the free-field 
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Table 1. Series 1 (A-D) and series 2 (E and G) of studied profiles 

Case &Iv, Ed& H.&b W Computed o1 d/V, 

A 0.58 5000 1 20 0.048 
B 1 5000 1 20 0.079 
C 1-73 5000 1 20 0.116 
D 3 5000 1 20 0.141 
E 3 5000 1 10 0.282 
G 3 5000 1 40 0.071 

soil displacement profile only in an average sense. 
As a result, curvatures sustained by the pile are 
considerably smaller than those induced on a ver- 
tical line in the unperturbed soil. Deviations are 
evident near the ground surface and at the inter- 
face between the upper and lower soil layers. 
Such deviations merely reflect different pile and 
soil boundary conditions at these two locations. 

Figure 2(b) shows only pile deflexion profiles 
(normalized with the bedrock displacement 
amplitude) at the natural frequency of each 
deposit, for all series 1 profiles. The top-to- 
bottom displacement ratio (amplification) does 
not change significantly from case to case; differ- 
ences are limited to the shape of the displacement 
profile. With highly contrasting stiffness (cases A 
and D) most of the amplification occurs in the 
soft layer (i.e. in the lower and upper layers 
respectively), while the displacement profile 
achieves a fairly uniform slope in both the homo- 
geneous profile (case B) and the layered profile 

- Soil 
____- Pile 

1.01 r I I I 

0 2 4 6 

hdJg (soil), Up/U, (pile) 

(a) 

0 

that exhibits only small differences in relative soil 
stiffness (case C). The deflexion profiles in Fig. 
2(b) should not lead to the conclusion that peak 
pile displacements near the surface are insensitive 
to the soil profile characteristics, since the 
bedrock displacement (used as a normalization 
factor) corresponds to the natural frequency of 
the deposit. If, instead, bedrock acceleration is 
used in the normalization (perhaps a more logical 
choice for seismic excitation), top deflexions at 
the natural frequency of the deposit decrease pro- 
gressively from case A to case D; this is a direct 
result of the corresponding increase in the funda- 
mental frequency (see Table 1). 

The effect of variation of the S-wave velocity 
ratio and pile slenderness on bending moment 
and shear force distributions along the piles is 
shown in Figs 3-5. Fig. 3 plots the normalized 
amplitudes of bending moment and shear force at 
the fundamental natural frequency w = oi for 
various S-wave velocity ratios (series 1 cases). 

r Pile deflexions 

,“,‘. 

,’ /’ / /” 

w = w, 

L I 

0 2 4 6 

UJU, (pile) 

(W 

Fig. 2. Comparison of distributions with depth of: (a) free-field (soil) and pile deflexions for profiles A and D; (b) pile 
deflexions for profiles A, B, C and D 
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JO{ 

9 

Fig. 3. Distribution with depth of the amplitudes of: (a) bending moment; (b) shear force, at the fundamental natural 
frequency of the deposit (cases A, B, C and D) 

Bending moments are invariably maximal at, or 
very close to, the interface between the upper and 
lower soil layers, and zero at the surface and at 
bedrock level (free-head pile hinged on the 
bedrock). Moreover, the shape of these moment 

diagrams reveals that the peak of the M(z) curve 
near the layer interface becomes sharper with 
increasing difference in stiffness between the two 
layers; the peak is flattest with the homogeneous 
stratum (profile B). The same characteristics are 

I 

3000 

M/Q d4ii P 9 
(4 

6 

w = 0, 

I 
500 

Qlepd& 

(b) 

Fig. 4. Distribution with depth of the amplitudes of: (a) bending moment; (b) shear force, at the fundamental natural 
frequency of the deposit (cases D, E and G) 
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Case D 

0 4000 8000 0 2000 4000 

Mle d4ii P 9 MiQ,ff ii, 

Fig. 5. Distribution of bending moment amplitude at the natural frequency of the deposit: solid lines sbow values com- 
puted from the ‘exact’ pile deflexions; broken lines show values computed from the free-field soil displacements, i.e. on 
the assumption that piles follow the soil motion exactly 

shown in Fig. 4(a), which contrasts bending 
moment distribution for various pile slenderness 
ratios (series 2 cases). The very short and hence 
rigid pile (case E) does not follow the soil dis- 
placement curvatures closely; normalized bending 
moments are smaller than in more flexible piles 
(cases D and G) while in absolute terms M 
increases approximately in proportion to pile 
length and to d3. 

The importance of the soil-pile kinematic inter- 
action is better elucidated with reference to Fig. 5. 
The ‘exact’ bending moment distributions at w = 
wi are plotted in solid lines for the two extreme 
cases studied (A and D, corresponding to a stiff 
crust and a soft upper layer respectively). The 
dashed lines show the corresponding bending 
moment distributions if interaction is neglected, 
i.e. if pile displacements are assumed to be equal 
to free-field soil displacements-an assumption 
often invoked in seismic design practice (see for 
example Margason & Holloway (1977)). Signifi- 
cant errors evidently could occur in the estima- 
tion of bending moments under this assumption. 
Consequently, soil-to-pile kinematic interplay 
should not be neglected. 

Figure 6 plots the spectrum of maximum- 
along-the-pile bending moment amplitude as a 
function of the frequency ratio w/w1 for the series 
1 profiles. In most cases studied, the largest 
maximum value max. M,(w) has indeed been 
found to occur at the fundamental frequency of 
the deposit. In case A in particular, max. M,(w) is 

associated with a sharp amplification of motion 
despite the hysteretic damping of the soil (10%). 
The maximum bending moment decreases rapidly 
for frequencies higher than oi due to the rapidly 
increasing radiation damping and the increasing 
waviness of soil which cannot be followed by the 
pile. At excitation frequencies lower than the fun- 
damental frequency of the deposit there is little 
radiation damping, since laterally-spreading 
waves (which are carriers of radiated energy) are 
not generated, e.g. Kausel, Roesset & Waas 
(1975), Dobry, Vicente, O’Rourke & Roesset 
(1982), Gazetas (1983) Krishnan, Gazetas & 
Velez (1983). 

However, max. M,(w) does not always occur 
at the fundamental frequency of the deposit: for 
certain combinations of pile/soil parameters the 
largest peak can be shown to occur at the second 
natural frequency. This could have been antici- 
pated, since bending moments in the pile are con- 
trolled by two counteracting factors 

(a) the value of the normalized curvature of the 
pile displacement shape-larger values occur 
in the higher modes as they are more ‘wavy’ 

(b) the overall amplitude of the pile displacement 
profile-larger values occur in the lower 
modes. The peaks of soil displacement ampli- 
fication (ratio of top to bottom free-field soil 
displacements) are in first approximation 
inversely proportional to 2n - 1, where n is 
the mode number (e.g. Roesset (1977), Gazetas 
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Fig. 6. Maximum bending moment amplitude (at the most adverse location along the pile) as a function of the 
frequency 

(1987)); hence the amplification in the second 
mode would be only one-third of that in the 
first (fundamental) mode. 

The second mechanism usually prevails, and thus 
peak response occurs at the fundamental mode, 
but in some cases the first mechanism is domi- 
nant and the response is largest at the second 
natural frequency. 

II I I I 
0 1 2 3 4 5 

w/u, 

Fig. 7. Depth at which maximum bending moment 
amplitude occurs along the pile as a function of frequency 

Figure 7 shows the depth at which pile bending 
moment becomes maximum with varying fre- 
quency (series 1 profiles). At low frequencies the 
maximum occurs at, or very close to, the layer 
interface. At higher frequencies, which can excite 
effectively higher mode shapes, the location of 

I I \G I 

0 1 
w/w, 

2 3 

(b) 

Fig. 8. (a) Maximum bending moment amplitude (at the 
most adverse location along the pile); (b) location of the 
maximum bending moment amplitude along the pile, as a 
function of frequency 
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Fig. 9. Effect of soil Poisson’s ratio on the maximum 
bending moment amplitude (at the most adverse location 
along the pile) as a function of frequency: ease D 

maximum moment is shifted away from the inter- 
face (above or below). However, with an actual 
earthquake excitation, containing many fre- 
quencies, the maximum moment should be 
expected to be within a two-diameter distance of 
the interface, in accordance with the design rules 
of the first draft of Eurocode EC8 (1990). With 
more flexible piles (I$/_!?, < X300), this distance 
from the interface is reduced to one diameter. 

Figure 8 plots the spectrum of maximum 
bending moment amplitude and its location 
along the pile (series 2 profiles). The largest nor- 
malized maximum bending moment M/(p, d4ii,) 
increases with pile slenderness and occurs near 
the layer interface. Fig. 9 illustrates the effect of 
soil Poisson’s ratios v, and vb on the spectrum of 
maximum-along-the-pile bending moment ampli- 
tude as a function of the frequency ratio for case 
D (soft upper layer). Moments increase slightly 
with increasing Poisson’s ratio. They appear to be 
more sensitive to the Poisson’s ratio of the softer 
layer, but the overall variation is less than 10% 
despite the wide range of Poisson’s ratios used. 

A SIMPLIFIED MODEL FOR THE KINEMATIC 
RESPONSE 

The pile displacement and bending moment 
profiles presented above elucidate the dynamic 
interplay of soil and pile response. This interplay 
is especially noticeable when piles penetrate soil 
layers with strongly contrasting stiffnesses. 
However, rigorous analytical tools (such as the 
FE model with wave-transmitting boundaries 
employed in the previous analyses), even if avail- 
able, have well-known limitations when used in 
seismic design. This is particularly true if seismic 
analysis using actual or simulated ground 
motions is to be performed in the frequency 
domain, since pile response must be computed at 
a large number of frequencies (of the order of 
thousands) covering the frequency content of the 
seismic signal. Therefore, a simplified analytical 

model would be quite useful provided that it had 
been shown to match the rigorous results ade- 
quately for a wide range of pile types, soil profiles 
and excitation frequencies. 

The simplified model proposed in the present 
study satisfies the above requirements. It is based 
on the BDWF approach, in which the soil is rep- 
resented by springs and dashpots continuously 
distributed along the pile length (Fig. 10). This 
approach has been used extensively to estimate 
the dynamic impedances of piles in relation to 
inertial interaction studies, i.e. for dynamic excita- 
tion applied to the top of the pile (e.g. Novak 
(1974), Berger & Pyke (1977) Novak & Aboul- 
Ella (1978), Bea (1980), Sanchez-Salinero (1982), 
Dobry et al. (1982)). A few studies have also used 
Winkler-type models to determine the kinematic 
deflexion of piles. Penzien (1970) developed a 
lumped-parameter model of the pile and intro- 
duced non-linear springs and dashpots with 
intuitively-evaluated parameters to represent 
pileesoil interaction. Flores-Berrones & Whitman 
(1982) used linear Winkler springs of arbitrarily- 
assigned stiffness k = 72s” (where s, is the 
undrained shear strength of the soil), ignoring 
radiation and hysteretic damping, to obtain 
qualitative estimates of the seismic deflexion of a 
pile in a homogeneous stratum. Barghouthi 
(1984) went a step further by utilizing Novak’s 
plane-strain thin-layer solution (Novak, Nogami 
& Aboul-Ella, 1978) to assign theoretically-sound 
frequency-dependent spring and dashpot values 
and to study the response of piles embedded in a 
homogeneous stratum, under several types of 
seismic excitation. 

The Winkler model developed here differs from 
those of the studies referred to above in that it is 
applied to two-layered (rather than homo- 
geneous) deposits, it proposes rational closed- 
form expressions for springs and dashpots based 
on three-dimensional finite-element results (as 
opposed to Novak’s two-dimensional solution), 
and it is calibrated for maximum kinematic 
bending moments (rather than pile-head 
deflexions). The kinematic response in a homoge- 
neous stratum using closed-form expressions for 
the springs and dashpots based also on FE results 
has been studied by Kaynia & Kausel (1980) for 
sleeved piles and by Dennehy & Gazetas (1985) 
for sheet piles. The specific details of the proposed 
BDWF model are as follows. 

The soil surrounding the piles is assumed to 
consist of the free field, where the seismic S-waves 
propagate vertically, unaffected by the presence of 
the pile, and an interaction zone where soil 
motions affect and are affected by the pile. The 
analysis is performed in two stages, as shown in 
Fig. 10. In the first stage, the free-field soil 
motions are computed using a suitable one- 
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Fig. 10. Proposed BDWF model for a multi-layered soil profile and a free-head pile: the 
system is excited by vertically-propagating S-waves 

S-wave propagation method. In this . . . . 
study, free-field displacements 

u& r) = u,,(z) expCr(wr + dl (3) 

produced by vertically-incident harmonic S-waves 
are computed analytically, assuming linear hys- 
teretic soil behaviour. Each layer is characterized 
by a complex shear wave velocity 

v: = v,J(l + 21/I) (4) 

where V, = J(G/p) is the actual shear wave veloc- 
ity and B is the hysteretic damping ratio. 
(However, within the framework of the developed 
procedure, equivalent linear and non-linear soil 
models could also possibly be used to this end.) 
The details of this stage of the analysis are not 
given here as they can be found in Schnabel, 
Lysmer & Seed (1972), Roesset (1977) and Kausel 
& Roesset (1984). 

The second stage of the analysis computes the 
response of the pile and its adjacent interaction 
zone, modelled by continuously distributed hori- 
zontal springs (of stiffness k,) and dashpots (of 
viscosity cJ excited at their support by the free- 
field soil displacements u&, t) computed in the 
first stage of the analysis. At the other end, the 
springs and dashpots are connected to the pile, 

on which they transmit horizontal displacements 

u&z, t) = U,(Z) expCz(wt + a,)1 (5) 
and produce bending moments and shear forces. 
The force (per unit length of pile)-to-displacement 
ratio of the Winkler medium defines the complex- 
valued frequency-dependent impedance 

S, = k, + twc, (6) 

As a first approximation, based on comparative 
finite-element studies (Gazetas & Dobry, 1984a), 
the spring stiffness k, could be considered to 
be approximately frequency-independent and 
expressed as a multiple of the local soil Young’s 
modulus E, 

k, z 6E, (7) 

where 6 is a frequency-independent coefficient 
assumed to be constant (i.e. the same for all layers 
and independent of depth). The evaluation of 6 
(in terms of key pile and soil properties), by use of 
the FE results on bending moments, is one of the 
main contributions of the present study. 

The stiffness parameter c, in equation (6) rep- 
resents both radiation and material damping; the 
former arises from waves originating at the pile 
perimeter and spreading laterally outward and 
the latter from hysteretically-dissipated energy in 
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the soil. The following algebraic expression, based 
on the work of Roesset & Angelides (1980), 
Krishnan et al. (1983) and Gazetas & Dobry 
(1984a, 1984b) is used here 

c~ Z (Cx)radiation + (Cx)hysteresis 

or 

(8) 

cX~2ap,v,[1 +(y4]G-l~4+2kx~ (9) 

where a, E od/Vs is the dimensionless frequency 
and VC is the apparent velocity of the extension- 
compression waves, taken as the Lysmer’s ana- 
logue velocity (introduced by Gazetas & Dobry 
(1984a, 1984b)) 

3.4v 
v, Z v,, = 2 

$1 - v) 

at all depths except near the ground surface 
(z < 2,5d), where three-dimensional effects arising 
from the stress-free boundary are better repro- 
duced by use of 

VC Z v 5 (11) 

Furthermore, radiation damping must essentially 
vanish for excitation frequencies lower than the 
fundamental frequency in shear of the soil profile, 
as explained above. 

Based on the above, the governing differential 
equation of the pile response is 

4 2 

E,I, 2 + mp 2 = Sr(uff - up) (12) 

The solution to equation (12) for a two-layered 
profile and harmonic wave excitation is outlined 
in Appendix 1. Evidently, the computed pile 
response will depend on the chosen value of the 
Winkler spring parameter 6. The sensitivity of 
pile deflexions and bending moments to varia- 
tions in 6 is explored in Figs 11-13. The range of 
values studied (1 < 6 < 4) is wider than that 
reported in the literature for pile-head loading 
(e.g. Vesic (1961), Gazetas & Dobry (1984a)). 

Figure 11 demonstrates that seismic pile-head 
deflexion is rather insensitive to changes in 6, 
except perhaps at a few frequencies. This is prob- 
ably because pile deflexions are largely governed 
by the free-field soil displacements (which of 
course are independent of 6). In contrast, the 
maximum bending moments M,(w) (Fig. 12) as 
well as the bending moment and shear force dis- 
tributions at resonance M(z, q) and Q(z, WJ 
(Fig. 13) show some sensitivity to 6. 

In earlier studies of dynamic pile response, an 
optimum value of 6 was obtained by matching 

odll’, 
0.5 1 1.5 

I I 1 

0 FE results 
Case 12 

0. I I c 
0 5 w/w, 10 

(4 

15 

7.5; ( 
0.5 wdiV, , 1.5 I , I 

case 12 

s” 5- 

B 
3 

2.5 - 

0 
0 5 wiut 10 15 

Fig. 11. BDWF model predictions of: (a) interaction 
transfer function (ratio of pil+head to groundsurface 
displacements); (b) amplitude of pile-top deflexion, as 
functions of frequency for various values of the coefticient 
6: the FE prediction is almost identical to the curve for 
6 = 25; only a few FE points are shown 

cod/V, 
0.25 0.5 

Case 12 

k6=4 
0 FE results 

300 
1 

Fig. 12. BDWF model predictions of the maximum 
bending moment amplitude (at the most adverse location 
along the pile) as a function of frequency for various 
values of the coefficient 6: the FE prediction is almost 
identical to the curve for 6 = 25; only a few FE points 
are shown 
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W 

Fig. 13. BDWF model predictions of the amplitudes of: (a) bending moment profiles; (b) shear force profiles, at the 
natural freaoencv of the deaosit for various values of the coefkient 6: the FE prediction is almost identical to the carve 
for 6 = 25; o&a few FE -pints are shown 

Table 2. Series 3 of studied profiles 

Case Vdv, E,IEa 

0.58 

7 
8 
9 

10 

1.50 

500 

5000 

1000 
lC000 

11 
12 
13 
14 
15 
16 

1.73 500 

5ooo 

17 
18 
19 
20 

21 
22 
23 
24 

1000 
10000 

1000 
10000 

1 

1 

3 
0.33 
1 
3 

3 
0.33 
1 
3 

3 
0.33 
1 
3 

10 
20 
40 
10 
20 
40 

20 

10 
20 
40 
10 
20 
40 

20 

20 

Computed 
w,dlV, 

0.0964 
0.0482 
0.0241 
0.0964 
0.0482 
0.024 1 

0.0916 
0.1164 
0.1058 
0.0913 

0.2310 
0.1155 
0.0578 
0.2310 
0.1155 
0.0578 

0.1017 
0.2117 
0.1415 
0.1019 

0.1042 
0.2897 
0.1535 
0.1045 
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3 (1982), Gazetas & Dobry (1984a)). In view of the 
insensitivity of pile deflexions to variations in 6 
and an interest in the assessment of pile distress 
due to seismic wave propagation, 6 in this study 
was back-figured by matching BDWF and FE 
values for the maximum-over-depth bending 
moment at the natural frequency of the deposit 
M,(w,): this value of b is referred to below as the 
optimum value a,,,. For case 12 (Figs ll-13), 

~ L/d = 20 H, = Hb 
6 

0 
z 2.5. 

---- Ud = ~$0 I/$ = 0.4 The success of the developed BDWF model 

200 
I I can be judged from the fact that it also matches 

1000 3000 10000 
Ed& 

the following FE results 

Fig. 14. BDWF model coefficient 6 values computed by 
use of equation (13) for typical soil and pile parameters 

the values of the static pile-head stiffness com- 
puted with the Winkler model and with a rigor- 
ous (e.g. dynamic FE) formulation (see for 
example Roesset & Angelides (1980), Dobry et al. 

(a) the whole range of maximum-over-depth 
bending moments M,(wbas shown in Fig. 
12, the achieved agreement is excellent over 
the whole frequency range of practical inter- 
est, and for all parametric cases studied 

(b) the distribution of bending moment and shear 
force with depth at a particular frequency 
M(z, wtas shown in Fig. 13 for case 12 at 
w = aI, the agreement is satisfactory 

Table 3. Series 3 profiles: comparison of FE and BDWF results 

Case K&J* M,(w,)§ Error: % 11 
pp d4iig Ppd4iiB 

1 709 760 7.2 
2 1253 1282 2.3 
3 2088 2196 5.1 
4 1854 1623 - 12.4 
5 7718 8019 3.9 
6 13120 13320 1.5 

I 508 515 1.4 
8 1113 1097 -1.5 
9 931 1070 15.0 

10 1482 1433 -3.3 
11 86 79 -7.1 
12 269 253 -5.6 

13 656 577 - 12.0 
14 213 266 -2.6 
15 998 860 - 13.9 
16 3054 2825 -1.5 
17 1046 1075 2.8 
18 875 896 2.3 

19 2949 3042 3.2 
20 4867 4911 -0.9 
21 1486 1480 -0.4 
22 1128 1274 13.0 
23 3809 4193 10.1 
24 6730 6831 1.5 

* Computed maximum moment at resonance (FE method). 
t Value of 6 required for the BDWF model to match the FE results 
at resonance. 
1 Value of 6 computed from the proposed formula equation (13). 
5 Maximum moment prediction at resonance. BDWF model predic- 
tion using dcomp values. 
11 Percentage error in the BDWF moment as compared with the FE 
moment. 

1.69 
2.08 
2.07 
1.89 
1.50 
1.71 

2.14 
1.59 
1.00 
1.79 
2.18 
2.50 

3QO 
1.67 
2.35 
2.16 
1.92 
1.28 

1.30 
1.56 
2.06 
1Tnl 
0.95 
1.36 

2.21 
2.41 
2.63 
1.66 
1.81 
1.97 

2.21 
1.42 
1.55 
1.70 
2.05 
2.24 

2.44 
1.54 
1.68 
1.83 
2.17 
1.35 

1.48 
1.63 
2.07 
1.29 
1.42 
1.55 
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(c) the pile-head displacement spectrum U,(O, o) 
as shown in Fig. 11, and the distribution of 
displacements with depth U&z, w) (not shown 
here). 
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Equation (15) has the same form as equation (14) 
and shows, understandably, a weaker dependence 
of 6 on the pile-to-soil stiffness ratio than do 
equations (13) and (14). 

The value of 6,,, depends on the dimensionless 
geometric and material parameters of the 
problem. With the results for the series 3 profiles 
(Table 2), a multiple regression analysis was per- 
formed to derive a closed-form expression for 
a,,,. For simplicity, and in view of the demon- 
strated low sensitivity of the results to the exact 
value of 6, the regression coefficients were 
rounded off to produce the approximate expres- 
sion 

6 eomp = & (~)‘:“(y” 
x (!!JiZ(;)“” (13) 

which for the case of a homogeneous soil and a 
pile with circular cross-section simplifies to 

6 
3 E l/S L l/S 

camp z- -2 
1 -v: E, ii (> 0 

Equation (13) is plotted in Fig. 14 for the case of 
soil layers of equal thickness. The values of the 
spring coefficient 6 are not very sensitive to varia- 
tions in soil and pile properties, at least for realis- 
tic values of these properties. 

Table 3 summarizes the results of assessment of 
the performance of the BDWF model by use of 
the procedure suggested above. Despite some dif- 
ferences between 6,,, and bcomp, the computed 
M,(w,) is within 15% of the optimum value. All 
other quantities of interest are equally well pre- 
dicted using bcomp. Note that the percentage 
errors are the maximum errors over all fre- 
quencies and all locations along the pile. The 
comparison of the peak moment (at resonance) 
computed by the FE formulation and the BDWF 
model (using 6 _J is satisfactory, despite the 
sharp response at this frequency, with deviations 
< 15% (< 7% in most cases). 

The proposed relationship for the Winkler 
spring coefficient (equations (13) and (14)) is remi- 
niscent of the relationship derived by Vesic (1961) 
for the analogous static problem of an infinitely- 
long beam (modulus EJ on the surface of a 
homogeneous elastic half-space (modulus EJ. By 
comparing the ‘exact’ bending moment distribu- 
tion with that obtained by the ‘subgrade-reaction’ 
(Winkler) model, Vesic proposed the following 
relationship for the static spring coefficient 

(15) 

CONCLUSIONS 
The kinematic interaction between soil and a 

free-head pile during seismic excitation consisting 
of vertically-propagating harmonic S-waves has 
been shown to be important. The magnitude of 
the bending moments developed in the pile may 
be appreciable, especially near interfaces of soil 
layers with highly contrasting S-wave velocities. 
Such profiles are quite common: examples 
include the cases of a stiff overconsolidated clay 
crust underlain by a softer soil, and a soft surficial 
layer underlain by a stiff soil stratum. If strong 
seismic excitation is anticipated, the pile sections 
near layer interfaces should be designed with the 
necessary strength and ductility so that their ver- 
tical load-carrying capacity is maintained, just as 
required by Eurocode EC8 (1990). 

The parametric graphs shown for the 
kinematically-induced bending moments fill a gap 
in the geotechnicallearthquake literature. Such 
graphs could be readily used in preliminary 
design calculations, but also help to develop 
insight into the mechanics of pile-soil kinematic 
interplay. For more detailed design calculations, a 
versatile BDWF model has been developed and 
calibrated. Simple analytical expressions are pro- 
posed for estimation of the stiffness of the 
continuously-distributed Winkler springs, as well 
as the viscosity of the associated Winkler dash- 
pots, that can reproduce the radiation and hyster- 
etic damping of the system. While the calibration 
emphasizes bending moments, the BDWF model 
is shown to predict pile deflexion in accordance 
with more rigorous FE solutions. 
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APPENDIX 1. DYNAMIC WINKLER MODEL FOR 
PILE RESPONSE TO HARMONIC S-WAVES 

The harmonic free-field response 

u&, t) = U,, exp [t(wt + +)I = O,, exp (rot) (16) 

is determined using well-established wave propagation 
(soil amplification) methods (Schnabel et al., 1972; 
Roesset, 1977, etc.). The deflexion of the pile (see Fig. 

11) 

u&z, t) = U, exp [z(wt + a,)] = O,(z) exp (~wt) (17) 



220 KAVVADAS AND GAZETAS 

is then derived from the steady-state solution of equa- 
tion (12) for each soil (and pile) layer, or from the ordi- 
nary differential equation 

where 

Equation (16) has the general solution 

’ + so,, 

(18) 

(19) 

(20) 

where s = a/(q*“ - A’) and D,, D,, D,, D, are arbitrary 
constants to be evaluated from the compatibility equa- 
tions and the boundary conditions. By use of equation 

(20) 

D3 II D4 

or concisely, for a pile element in 
layer j 

8,Jz) = F,(z) Bj + sj O,(z) 

the domain of soil 

(22) 

The vector O,(z) is available from the soil amplification 
solution. 

In the case of a multi-layer soil profile with N layers 
(j=1,2 , ... , N), equation (21) consists_of a set of ,4N 
equations with 4N arbitrary constants D,, D,, . . , D,. 
These constants can be evaluated from the compat- 
ibility equations and the boundary conditions. 

Compatibility equations 
At the (N - 1) soil layer and pile interfaces, the pile 

deflexion up, rotation 8, moment, M and shear force Q 
must be continuous. These compatibility requirements 
can be expressed by the following 4(N - 4) equations 
(for an arbitrary interface j) 

Boundary conditions 
At the pile top, in the case of a free-head pile 

Q(0, t) = M(0, t) = 0 (24) 

At the pile base, in the case of a pile hinged at the 
bedrock 

M(z,, t) = 0 and U&Z,,., t) = u,(t) (25) 

A set of 4N equations is thus obtained which can be 
solved for the constants 6,, B,, . , 6,. Once these 
constants are evaluated, pile displacements, moments, 
shear forces etc. can be obtained directly from equation 
(21) since 

pile displacement : 
pile rotation : 

U,,(z) 
O(z) = r&(z) 

pile moment : 
pile shear : 

M(z) = - E, I, U&,(z) 
Q(z) = -E, I, U;P(z) 

Extension of the above analysis to floating piles (i.e. 
piles not reaching the bedrock) as well as to other 
boundary conditions (e.g. piles restrained from rotation 
at the top or piles fixed at bedrock) is straightforward. 

NOTATION 

c.X 

d 
E. 

E,, EL., E:, 
4 

G,, G,, Gi 
H,,H,,Hi 

4 

k 

L 
M = M(z, co) 

M, = M,,,(w) 

I 

coefficient of the distributed Winkler 
dashpots 
pile diameter 
soil Young’s modulus in general 
soil layer Young’s moduli 
pile Young’s modulus 
soil layer shear moduli 
soil layer thicknesses 
pile cross-section area moment of 
inertia 
stiffness of the distributed Winkler 
springs 
pile length 
amplitude of bending moment along 
the pile 
amplitude of maximum bending 
moment along the pile 
pile mass per unit length 
amplitude of shear force along pile 
complex stiffness of Winkler-type soil 
resistance 
amplitude of free-field soil displacement 
amplitude of bedrock displacement 
amplitude of bedrock acceleration 
amplitude of pile displacement 
free-field soil displacement 
bedrock displacement (used as 
excitation) 
pile displacement 
soil layer shear wave velocities (general, 
of layers a, b and i) 
vertical co-ordinate (depth) 
depth at which the maximum bending 
moment occurs along the pile 
phase angles of pile and free-field soil 
displacements 
hysteretic damping ratios of soil 
(general, of layers a, b and i) 
pile damping ratio 
frequency-independent stiffness 
coefficient of the Winkler springs 

J(-1) 
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v,, q,, vi, v, soil layer Poisson’s ratios 
pp pile mass density 

pn, pa. us, pi soil layer mass densities (general, of 
layers a, b and i) 

w excitation circular frequency 
w1 natural circular frequency of the soil 

deposit 
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