
FORMULAS AND CHARTS FOR IMPEDANCES OF 

SURFACE AND EMBEDDED FOUNDATIONS 

By George Gazetas , ' Member , ASCE 

ABSTRACT: A complete set of algebraic formulas and dimensionless charts is pre­
sented for readily computing the dynamic stiffnesses (K) and damping coefficients 
(C) of foundations harmonically oscillating on/in a homogeneous half-space. All 
possible modes of vibration, a realistic range of Poisson's ratios, and a practically 
sufficient range of oscillation frequencies are considered. The foundations have a 
rigid basemat of any realistic solid geometric shape. The embedded foundations 
are prismatic, having a sidewall-soil contact surface of height d, which may be 
only a fraction of the embedment depth D. Two numerical examples illustrate the 
use of the formulas and charts and elucidate the role of foundation shape and 
degree of embedment on radiation damping for various modes of vibration. A com­
panion paper (Gazetas and Stokoe 1991) presents supporting experimental evidence 
from model tests. The two papers aim at encouraging the practicing engineer to 
make use of results obtained with state-of-the-art formulations, when studying the 
dynamic response of foundations. 

INTRODUCTION 

A key step in current methods of dynamic analysis of soil-foundation-
structure systems under seismic or machine-type inertial loading is to esti­
mate, using analytical or numerical methods, the (dynamic) impedance func­
tions associated with a rigid but massless foundation. In the last 20 years a 
number of techniques have been developed for computing and using foun­
dation impedances; extensive reviews of these developments were presented 
by Lysmer (1978), Roessett (1980a, b), Luco (1982), Gazetas (1983), No­
vak (1987), and Pais and Kausel (1988). The presently available methods 
include: (1) Analytical solutions based on integral transform techniques; (2) 
semianalytical and boundary-element formulations requiring discretization of 
only the top surface; (3) dynamic finite-element methods using special "wave-
transmitting" lateral boundaries; and (4) hybrid methods combining analyt­
ical and finite-element approaches. 

In practical applications the selection of an appropriate method depends 
to a large extent on the size and economics of the project, as well as the 
availability of pertinent computer codes. Moreover, the method to be se­
lected must adequately reflect the following key characteristics of the foun­
dation-soil system and the excitation. 

• The shape of the foundation-soil interface (circular, strip, rectangular, ar­
bitrary). 

• The amount of embedment (surface, partially or fully embedded founda­
tion, piles). 
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• The nature of the soil profile (deep uniform or layered deposit, shallow 
stratum over bedrock). 

• The mode of vibration and the frequency(ies) of excitation. 

Application of computational methods to a specific engineering problem 
requires substantial expertise in idealizing the actual system, and entails sig­
nificant data-preparation and computation expenses. Thus, the effort needed 
to obtain one or two sets of usable results may preclude parameter studies— 
much needed for evaluating alternative design schemes and clarifying the 
role of uncertainties in material properties. Furthermore, the effects of some 
potentially significant phenomena (such as separation/sliding at the soil-
foundation contact surface) or of geometric complexities (as in the case of 
foundations with arbitrary shape and partial contact along the perimeter) can­
not be modeled readily with existing computer codes. 

As a practical alternative, several researchers have over the years devel­
oped simplified methods, presented results in dimensionless graphical or tab­
ular form, or fitted simple equations to their numerical results [examples: 
Lysmer and Richart (1966), Whitman and Richart (1967), Beredugo and 
Novak (1972), Meek and Veletsos (1973), Veletsos and Nair (1974), Kausel 
and Roesset (1975), Elasabee and Morray (1977), Novak et al. (1978), Kau­
sel and Ushijima (1979), Roesset (1980), Kagawa and Kraft (1980), Velez 
et al. (1983), Gazetas (1983, 1987), Wong and Luco (1985), Pais and Kau­
sel (1988), Gazetas et al. (1985), Hatzikonstantinou et al. (1989), Fotopou-
lou et al. (1989), Wolf (1988), Mita and Luco (1989)]. 

This paper presents a complete set of simple formulas and graphs covering 
(1) Nearly all foundation base shapes (excluding annular); (2) surface and 
partially and fully embedded foundations; (3) all the significant modes of 
vibration and a fairly adequate frequency range; but (4) only reasonably deep 
and uniform soil deposits that can be modeled as a homogeneous half-space. 
The latter choice is made out of necessity: a homogeneous half-space is the 
only idealization for which a complete set of results could be found or easily 
obtained, and that keeps the number of problem parameters to a minimum 
while the engineer tries to quantify the role of partial embedment and of 
basemat shape. Actually, however, the deposit need not be very deep for 
the half-space idealization to be applicable: horizontal and, especially, ro­
tational oscillations are known to produce very shallow dynamic pressure 
bulbs (on the order of one foundation width or even less). 

PROBLEM STATEMENT; DEFINITION OF IMPEDANCES 

The geometry of the rigid but massless foundations addressed in this paper 
is sketched in Fig. 1(a) (surface foundation) and in Fig. 1(b) (embedded 
foundation). The steady-state response of such systems to harmonic external 
forces and moments can be computed with well-established methods of 
structural dynamics once the matrix of dynamic impedance functions [S(co)] 
has been determined for the frequency (ies) of interest. 

For each particular harmonic excitation, the dynamic impedance is defined 
as the ratio between force (or moment) R and the resulting steady-state dis­
placement (or rotation) U at the centroid of the base of the massless foun­
dation. For example, the vertical impedance is defined by 
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FIG. 1. (a) Surface Foundation of Arbitrary Shape (See Table 1 and Fig. 2); (b) 
Embedded Foundation of Arbitrary Basemat Shape (See Table 2 and Fig. 3) 

S,= mo 
Uz(0 

(1) 

in which Rz(0 = R2 exp («W) = harmonic vertical force; and Uz(f) = U2 exp 
(imt) = harmonic vertical displacement of the soil-foundation interface. The 
quantity R2 is the total dynamic soil reaction against the foundation; it is 
made up of normal tractions against the basemat plus shear tractions along 
any vertical sidewalls. 

Similarly, the following impedances are defined: Sy = lateral swaying 
impedance (force-displacement ratio), for horizontal motion in the short di­
rection; Sx = longitudinal swaing impedance (force-displacement ratio), for 
horizontal motion in the long direction; S„ = rocking impedance (moment-
rotation ratio), for rotational motion about the long centroidal axis (x) of the 
foundation basemat; S ,̂ = rocking impedance (moment-rotation ratio), for 
rotational motion about the short centroidal axis (y) of the foundation base-
mat; and S, = torsional impedance (moment-rotation ratio), for rotational 
oscillation about the vertical axis (z). 

Moreover, mainly in embedded foundations and piles, horizontal forces 
along principal axes induce rotational (in addition to translational) oscilla­
tions; hence, two more "cross-coupling" horizontal-rocking impedances ex­
ist: S -̂̂ , and Sy-„. They are negligibly small in surface and shallow foun­
dations, but their effects may become appreciable for greater depths of 
embedment owing to the moments about the base axes produced by hori­
zontal soil reactions against the sidewalls. In piles, such cross-coupling 
impedances are as important as the "direct" impedances. 
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Note that throughout this paper (as in most of the literature) all impedances 
refer to axes passing through the centroid of the foundation basemat-soil 
interface. 

Because of the presence of radiation and material damping in the system 
for all modes of vibration, R is generally out of phase with U. It has become 
traditional to introduce complex notation and to express each impedance in 
the form 

S = K + mC (2) 

in which both K and C = functions of the frequency a>. The real component, 
K, termed "dynamic stiffness," reflects the stiffness and inertia of the sup­
porting soil; its dependence on frequency is attributed solely to the influence 
that frequency exerts on inertia, since soil properties are practically fre­
quency independent. The imaginary component, o>C, is the product of the 
(circular) frequency w times the "dashpot coefficient," C; the latter reflects 
the radiation and material damping generated in the system (due to energy 
carried by waves spreading away from the foundation and energy dissipated 
in the soil by hysteretic action, respectively). 

Eq. (2) suggests for each mode of oscillation an analogy between the ac­
tual foundation-soil system and the system that consists of the same foun­
dation, but is supported on a "spring" and "dashpot" with characteristic moduli 
equal to K and C, respectively. 

FORMULAS AND CHARTS 

Tables 1 and 2, accompanied by Figs. 2 and 3, contain all the information 
needed to estimate for each of the aforementioned eight modes of vibration. 

Table 1 and Fig. 2 contain the dynamic stiffnesses ("springs"), K = K((x>), 
each as a product of the static stiffness, K, times the dynamic stiffness coef­
ficient k = /c(w) 

K(u>) = K-&((0) (3) 

And Table 2 and Fig. 3 contain the radiation damping ("dashpot") coeffi­
cients, C = C(w). These coefficients do not include the soil hysteretic damp­
ing, 3; to incorporate such damping, one simply adds the corresponding 
material dashpot constant 2/fp/co to the foregoing (radiation) C value 

IK 
total C = radiation C + — p (4) 

(0 

While many of the algebraic expressions and the associated graphs given in 
Tables 1 and 2 were compiled from previous publications by the writer and 
his coworkers (Gazetas et al. 1985, 1987; Dobry et al. 1985; Hatzikonstan-
tinou et al. 1989; and Fotopoulou et al. 1989), some additional results ob­
tained for this article using two different boundary-element formulations, and 
retrieved from recent literature (Pais and Kausel 1988; Wolf 1988; Mita and 
Luco 1989; Ahmad et al. 1990) are also used. Note in particular that for 
torsion (of both surface and embedded foundations) completely new for­
mulas were developed based on the results of a comprehensive boundary-
element study by Ahmad et al. (1991). Moreover, some corrections were 
made and certain simplifications introduced in the results published previ-
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FIG. 2. Dimensionless Graphs for Determining Dynamic Stiffness and Damping 
Coefficients of Surface Foundations (Accompanying Table 1) 

ously to make the use of the presented information as simple and consistent 
as possible in engineering applications. 

USE OF TABLES—ILLUSTRATIVE EXAMPLES 

Surface Foundation on Half-Space 
For a nonrectangular basemat shape, the engineer must first draw a cir­

cumscribed rectangle of width 2B and length 2L (L > B), as is done in Figs. 
1, 4, and 5. [See Gazetas et al. (1985) for some additional examples.] Note 
that the results are not sensitive to the exact circumscribed rectangle, and 
that any reasonable such rectangle will suffice. Then, to compute from Table 
1 the impedances in the six modes of vibration, all he needs is the values 
of the following. 

• Ab = area; and Ibx, 1^, and lbz = area moments of inertia about the x-, y-, 
and z-axes of the actual soil-foundation contact surface. If loss of contact 
under part of the foundation (e.g. along the edges of a rocking foundation) 
is likely, the engineer may use his judgment to discount the contribution 
of this part of the basemat. 

• B and L = half-width and half-length of the circumscribed rectangle. 
• G and v, the shear modulus and Poisson's ratio; or Vs and VLa, the shear-

wave velocity and Lysmer's analog wave velocity; the latter is the apparent 
propagation velocity of compression-extension waves under a foundation, 
related to V, and v according to (Gazetas et al. 1985; Dobry and Gazetas 
1986) 
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FIG. 3. DImenslonless Graphs for Determining Dynamic Stiffness Coefficients of 
Fully and Partially Embedded Foundations (Accompanying Table 2) 

VLa = 
3.4 

TT(1 - v) 
(5) 

• to = 2TT/ = circular frequency (in radians/second) of the applied force 
(e.g. frequency of operation of the machine or one of the dominant fre­
quencies in the case of seismic excitation). 

A numerical example illustrates the use of Table 1 and the related di-
mensionless graphs of Fig. 2 in computing the dynamic stiffnesses (springs) 
and damping coefficients (dashpots), for the six significant modes of vibra-
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FIG. 4. Geometry and Material Parameters of Two Illustrative Examples 

tion. A sketch of the foundation with a list of all pertinent geometric, ma­
terial, and loading parameters is given in Fig. 4. The excitation frequency 
i s / = 18 Hz, resulting in a dimensionless frequency factor a0 = wfi/V^ = 
1.23. Due to lack of symmetry about the centroidal axis v, some "parasitic" 
cross-coupling modes may also get excited. For instance, a vertical external 
force acting through the centroid will be resisted by normal tractions against 
the basemat; the lack of complete symmetry in these tractions will trigger a 
rotational oscillation about the y-axis. Similarly a horizontal force parallel 
to y will trigger incidental torsional oscillations, and so on. Such secondary 
modes are not considered in this paper. The computations follow in metric 
(SI) units. Noting that x = Ab/4L2 = 0.26; and L/B = 3.2 we obtain the 
following. 

Vertical Mode (Table 1, Column 1) 
Static stiffness (from formula of Table 1, column 2) 
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FIG. 5. Comparison between Rocking Dashpot C„ Functions Computed with 
Expression of Table 2 and Results of Rigorous (Boundary-Element) Solution for 
Two T-Shaped Foundations Embedded In Homogeneous Half Space 

K = 
2 x 120,000 x 8.0 

X [0.73 + 1.54(0.26)a75] (6a) 
1 - 0.40 

Kz « 4.13 X 106 kN/m (6b) 

Dynamic stiffness coefficient (from Fig. 2 for a0 = 1.23) kz « 0.92. Dy­
namic stiffness (spring constant) from (3) 

Kz = 4.13 X 106 x 0.92 = 3.8 x 106 kN/m (7) 
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Radiation damping (from formula of Table 1, column 4) 

Cz = (1.85 x 460 x 66.82) x 1.0 « 56.9 x lO'kN-s-m""1 (8) 

Total damping (dashpot constant) from (4) 

2 X 3 8 X 10^ 
total C2 = 56.9 x 103 + : x 0.05 = 60 X 103 kN • s • m"1 (9) 

125.7 

Lateral and Longitudinal Horizontal Modes (Table 1, Column 1) 

Working in similar fashion we obtain the following. 

Ky « 3.9 x 106 kN/m (10) 

Kx = 3.0 x 106 kN/m (11) 

total Cy « 34.5 x 103 kN • s • m - 1 (12) 

total C, « 34 x 103 kN • s • m - 1 (13) 

Rocking Modes rx (Longitudinal Axis) and ry (Lateral Axis) 

120,000 „ „ „ „ / 0.5\ 
Krx = x (121.1)075 x (3.2)025 x 2.4 + — (14a) 

1 - 0.40 V 3.2/ 

Krx « 25 X 106 kN • m (14b) 

krx « 1 - 0.20 X 1.23 « 0.754 (15) 

Krx = 25 X 106 X 0.754 « 18.89 x 106 kN • m (16) 

Crx = (1.85 x 460 x 121.1) x 0.42 « 43.2 x 10 3 kN-s-m (17) 

, 2 x 18.8 x 106 

total Crx = 43.2 X 103 + x 0.05 

125.7 

« 58 x 103 kN • s • m (18) 

Working in similar fashion for mode ry 

^ = 86.3 X 106kN-m (19) 

total C^ » 802 X 103 kN • m • s (20) 
Torsional Mode (Table 1, Column 1) 

075 /1,226\° '2 /2 .5 \° ' 4 

K, = 3.5 x 120,000 x (1,226)075 x I - \ x — I (21a) 

K, « 109.0 X 106 kN • m (lib) 

k, « 1 - 0.14 x 1.23 * 0.83 (22) 

K, = 109.0 x 106 x 0.83 « 90 x 106 kN • m (23) 

C, = (1.85 x 255 x 1,226) x 0.88 (24a) 

C, « 509 x 103 kN • m • s (24A) 
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, 2 x 90 x 106 

total C, « 509 x 103 + x 0.05 (25a) 
125.7 

total C, « 580 x 103 kN • m • s (25b) 

This concludes the example computations. Having obtained for each mode 
the spring (K) and dashpot (tot-C) constants, the engineer can obtain the 
response of his structure or foundation using well-established methods of 
rigid-body or structural dynamics [e.g. Richart et al. (1970), Clough and 
Penzien (1974), Bielak (1975), Veletsos (1977), Arya et al. (1979), Roesset 
(1980b), Luco (1982), Gazetas (1983), Moore (1985), Das (1988), Prakash 
and Puri (1988)]. The companion paper (Gazetas and Stokoe 1991) outlines 
the use of K's and C's in determining natural frequencies and modal damping 
ratios of a freely oscillating rigid foundation. 

To get an insight into the meaning of the computed C, values (J = z, y, 
x, rx, ry, t), let us consider that the foundation base of Fig. 4(a) supports 
a rigid block having a (total) mass m = 1,400 Mg; and (total) mass moments 
of inertia Jx = 12,000 Mg-m 2 ; Jy = 1,110,000 Mg-m 2 ; and Jz = 96,000 
Mg • m2 about the base x- and y-axes, and the vertical z-axis, respectively. 
For each mode (assumed to be independent of the others) an "effective" or 
"equivalent" damping ratio, §, can be defined as follows. 

Translational modes 

total C, 
& = -~L (j = z,y,z) (26a) 

2 y/Kjm 

Rotational modes 

totalC, 
it = —— (i = rx, ry, t; p = x,y, z) (26b) 

2 VKJe 
[Notice in Figs. 2 and 3 that dynamic stiffnesses may attain negative values 
at certain frequency ranges. Such values imply a phase difference of 180°. 
The absolute value of such stiffnesses should be used in (20a) and (20ft)]. 

For the six modes considered we obtain the following. 

• Vertical: & « 0.41, or 41%. 
• Lateral: l-y ~ 0.23, or 21%. 
• Longitudinal: ^ = 0.25, or 23%. 
• Rocking about x: £„ *= 0.06, or 6%. 
• Rocking about y: ^ ~ 0.13, or 13%. 
• Torsion: ij, » 0.10, or 10%. 

From these values it is evident that with rotational modes the effective 
damping ratio is quite low; and with translational modes it can be very high— 
especially in the vertical direction. These differences are a direct conse­
quence of different amounts of radiation damping, which results from geo­
metric spreading of waves generated at the foundation-soil interface. When 
the foundation undergoes a vertical oscillation, such waves are emitted in 
phase and "reach" long distances away from the foundation; hence relatively 
large amounts of wave energy are "lost" for the foundation—high radiation 
damping. In contrast, two "points" symmetrically located on the opposite 
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[after Richart et al. (1970)] 

sides of a rocking foundation send off waves that are 180° out of phase and 
tend to cancel each other out when they meet at distant locations along the 
center line (dynamic equivalent of St. Venant's principle); hence, they can­
not reach long distances and consequently dissipate little energy from that 
imparted onto the foundation—low radiation damping. 

Such differences in effective damping ratios are typical for surface foun­
dations on a homogeneous half-space. Fig. 6, adopted from Richart et al. 
(1970), refers to a circular foundatigon of radius R. Each of the four damp­
ing ratios, £r, £,, £,rx, and £„ is portrayed as a decreasing function of a cor­
responding mass or mass-moment of inertia ratio. The overall consistency 
of the damping ratios computed in this example with those anticipated from 
Fig. 6 is evident. 

Two important conclusions emerge from Fig. 6. 
First, the consequences of resonance (when the operational or excitation 

frequency coincides with the natural frequency of the foundation-soil system) 
are far more serious for rocking than for translational vibrations. Avoiding 
resonance in rocking is a prudent consideration. On the other hand, relatively 
light foundations vibrating vertically on a homogeneous half-space may ex­
perience damping in excess of 50%. Hence, occurrence of resonance would 
hardly spell disaster; avoiding resonance at any cost, as some older design 
procedures recommend, could be misleading. [Recall that the "dynamic am­
plification^" at resonance is inversely proportional to the product of £ 
V(l - |2).] 

Second, the inertia of a foundation block increases relative to its base 
dimensions (i.e. as the inertia ratios increase) the effective damping ratios 
decrease. Therefore, older machine foundation design practices of keeping 
the foundation mass quite large are rather unfortunate. Another conclusion 
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from Fig. 6 is that block foundations may not necessarily be sensitive to 
high-frequency excitation; because, even in the unlikely event of resonance, 
peak response may not be excessive: high natural frequencies would require 
relatively small masses or moments of inertia and would thereby be asso­
ciated with high damping ratios. As a general rule, the critical frequency 
factors, a0 = uB/Vs, of interest do not exceed 2. 

The foregoing conclusions are valid for surface foundations on sufficiently 
deep and homogeneous deposits (half-space). One of the important factors 
that may modify these conclusions (qualitatively and quantitatively) is the 
presence of embedment. 

Foundation Embedded in Half-Space 
With the formulas and charts of Table 2 one can assess the effects of 

embedment in a variety of realistic situations. Note that Table 2 compares 
the dynamic stiffnesses and dashpot coefficients of an embedded foundation, 
Kemb (= Kemb • kemb) and Cemb, respectively, with those of the corresponding 
surface foundation, K (= K-k) and C, obtained from Table 1 and its ac­
companying graphs (Fig. 2). The additional parameters that must be known 
or computed before using Table 2 are: (1) D = depth of the foundation base 
below the ground surface; and (2) Aw and d = total area of the actual side-
wall-soil contact surface, and the height of the sidewall that is in good con­
tact with the surrounding soil. The quantity A„ should, in general, be smaller 
than the nominal area of contact (and d smaller than the nominal wall height) 
to account for such phenomena as slippage and separation that may occur 
near the ground surface. The engineer should refer to published results of 
large- and small-scale experiments for a guidance in selecting a suitable value 
for Aw or d [e.g., Stokoe and Richart (1974), Erden (1974), Novak (1985), 
Crouse et al. (1990)]. Note that Aw or d may not necessarily attain a single 
value for all modes of oscillation. 

A numerical example illustrates the use of Table 2 and Fig. 3. Fig. 4(b) 
sketches the foundation, whose basemat is identical to the mat of the pre­
vious example [Fig. 4(a)] but which is now placed at a depth D = 6 m. 
The sidewalls are in contact with the soil throughout the height D, but the 
engineer believes that the quality of contact at the top 2 m will be poor. He 
thus decides that the effective height of sidewall-soil contact is d = 4 m. 
The computations that follow make use of the results of the previous ex­
ample for K and C of the surface foundation. However, only three of the 
modes are considered herein. 

Vertical Mode (Table 2, Column 1) 
Noting that 

Aw = 35.77 x 4.0 = 153 m2 (27) 

D 6 
- = — = 2.4 (28) 
B 2.5 

and 

A„ 153 
— = = 2.14 (29) 
A„ 66.8 

one obtains the following. 
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Static stiffness (from the formula of Table 2, column 2) 

K, = 4.13 x 106 x 
2.4 

1 + — (1 + 1.33 x 0.26) 
21 

x [1 + 0.2(2.14)2/J] « 4.13 x 10" x 1.33 « 5.5 x 10" kN/m (30) 

The dynamic stiffness coefficient is obtained (with the help of Table 2, 
column 3) by linear interpolation between the fully embedded value of 

**,d=D=6n, « 0.92[1 - 0.09(2.4)3/4(1.23)2] « 0.74 (31a) 

and the value for the foundation placed in an open trench, without sidewalls, 
which is 

kz^0 « 0.92[1 + 0.09(2.4)3/4(1.23)2] - 1.26 . 

Thus 

4.0 x 0.74 + 2.0 X 1.26 

and 

6.0 
- 0 . 9 1 

(31ft) 

(31c) 

K. 2,emb = 5.5 x 106 x 0.91 « 5.0 x 106 kN/m (32) 

Radiation and total damping [from formula of Table 2 and (4)] 

C2,emb = 56.9 X 103 + (1,185 x 255 x 143) « 124 X 103 kN • s • m"1 . . . (33) 

2 x / x 106 

total Cz emb = 124 X 103 + : x 0.05 (34a) 
125.7 

total Cz,emb « 128 x 103 kN • s • m"1 (34*) 

Lateral Horizontal Mode (Table 2, Column 1) 
Noting that h = 4 m; h/B = 4 /2 .5 = 1.6; and Aw/L2 = 143/82 = 2.23, 

one obtains the following. 

Ky,cmb = 3.4 x 106 x (1 + 0.15 V2A)[l + 0.52(1.6 x 2.23)04]. 

ŷ,emb « 3.4 x 1Q6 x 2.3 - 7.9 x 106 kN/m. 

(35a) 

(35b) 

For the dynamic stiffness coefficient, we use the graphs of Fig. 3 as fol­
lows: For fully embedded foundation d = D, interpolation between the plots 
for L/B = 2; and L/b = 6 yields 

ky,d=D=bm ~ 0.30 

and from the last chart of Fig. 3 [Fig. 3(g)] 

(36) 

'S'.ei 
Ky,d=D=6m 

d 2 
Jfc - = -

\D 3 

"Td 
k - = 1 

\D 

0.30 x 1.25 x 0.38 (37) 
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TABLE 3. Comparison between Stiffness and Damping of the Example Surface 
and Example Surface and Embedded Foundation of Two Examples 

Mode 
0) 

Vertical (z) 
Lateral (y) 
Rocking (rx) 

(2) 

1.32 
0.88 
4.92 

« - (%) 
(3) 

41 
23 

6 

fcmb (%) 
(4) 

82 
>100 

43 

Thus 

Ky.emb = 7.9 x 106 X 0.38 « 3.0 X 106 kN/m (38) 

(Notice that Kyfimh < Ky of the surface foundation.) 

Cj,,emb = 31.5 x 103 + 4 x 1.85 x 255 x 2.5 x 4.0 

+ 4 x 1.85 x 460 x 8.0 X 4.0 = 190.8 x 103 kN • s • m_1 (39) 

total Cy,tmb « 193 x 103 kN • s • m"1 (40) 

Rocking Mode rx (about the Longitudinal Axis) 
Working in similar fashion 

Krx,smb « 93.5 X 106 kN • m ; (41) 

total C„,emb « 906 x 103 kN • m3 (42) 

Remarks, 
Embedment has produced very substantial changes for all springs and 

dashpots. For the previously studied massive foundation block, we sum­
marize these effects in Table 3, in terms of the dynamic stiffness ratio K^mb/ 
Ksm, and the equivalent damping ratios: £sur (from the previous example) and 
£emb (from the value of Cemb computed herein). 

Several conclusions of practical significance emerge from Table 3, and 
the foregoing illustrative example as follows. 

Increasing the embedment (in size and quality) may be a very effective 
way to reduce to acceptable levels the anticipated amplitudes of vibration; 
especially if these amplitudes arise due to rocking or torsion. Such an im­
provement would be effected mainly by the increase in radiation damping 
produced by waves emanating from the vertical sidewalls. 

To reliably count on such a beneficial effect, however, the engineer must 
ensure that the quality of sidewall-soil contact is indeed high. In reality, 
unless special construction procedures are followed, some separation ("gap­
ping") and slippage are likely to occur near the ground surface, where the 
initial confining pressures are small. Such effects may jeopardize the poten­
tial increase in damping and must be taken into account in the analysis. To 
this end, the areas and area-moments of inertia of the side wall surfaces on 
which damping and stiffness depend should be given suitably reduced values 
rather than their nominal ones. 

In view of the complexity of the problem for arbitrarily shaped partially 
embedded foundations, the formulas and charts of Table 2 and Fig. 3 provide 
a very simple and complete solution, while allowing the engineer to use his 
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experience and judgment. To just given an idea as to how the formulas of 
Table 2 compare with rigorous theoretical solutions, we present Fig. 5, which 
refers to two foundations having T-shaped basemats and subjected to har­
monic rocking oscillations. The circumscribed rectangles have L/B = 1 and 
2, and each foundation is uniformly embedded at depth D = B, with d = 
D. The rigorous results are from a dynamic boundary-element solution and 
are plotted as data points. The developed expressions for Crx, given in Table 
2, yield for each foundation the corresponding continuous lines. The agree­
ment is very satisfactory indeed. Also encouraging are comparisons of the 
presented equations and charts with small-scale experimental measurements 
[Dobry et al. (1986) for surface foundations; Gazetas and Stokoe (1990) for 
embedded foundations]. 

SUMMARY AND CONCLUSION 

Simple algebraic formulas (Tables 1 and 2) and dimensionless charts (Figs. 
2 and 3) for estimating the dynamic impedances (springs and dashpots) of 
foundations, for all the significant translational and rotational modes of vi­
bration were presented. The formulas and charts are valid only for a constant 
depth of embedment and for a solid basemat shape [rings and other annular 
shapes are excluded; see Tassoulas (1981) and Veletsos and Tang (1985) for 
results for such shapes]. However, the basemat may be of practically any 
solid shape, and the vertical sidewalls may have any degree of contact with 
the surrounding soil—from complete contact over the whole depth D to no 
contact at all. 

The numerical data on which the proposed formulas are based were de­
rived for an elastic and homogeneous half-space. In applications in which 
realistic profiles are encountered, these formulas would still serve to obtain 
useful reference values and help to properly interpret the results of sophis­
ticated (e.g. multilayered and nonlinear) analyses. Although most of the nu­
merical data are for perfectly rigid basemat and walls, the proposed formulas 
would yield sufficiently accurate estimates of the average displacement and 
rotation of realistically flexible foundations. 

The paper aims at encouraging the practicing engineer to make use of 
results obtained with state-of-the-art formulations when studying the dy­
namic response of foundations. The specific formulas and charts presented 
in the paper may prove particularly useful for preliminary calculations in the 
conceptual stage of the design process. 
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