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The paper reviews the state-of-the-art of analysing the dynamic response of foundations subjected 
to machine-type loadings. Following a brief outline of the historical developments in the field, the 
concepts associated with the definition, physical interpretation and use of the dynamic impedance 
functions of foundations are elucidated and the available analytical/numerical methods for their 
evaluation are discussed. Groups of crucial dimensionless problem parameters related to the soil 
prot~ile and the foundation geometry are identified and their effects on the response are studied. 
Results are presented in the form of simple formulae and dimensionless graphs for both the static 
and dynamic parts of impedances, pertaining to surface and embedded foundations having circular, 
strip, rectangular or arbitrary plan shape and supported by three types of  idealized soil profdes: the 
halfspace, the stratum-over-bedrock and the layer-over-half space. Consideration is given to the effects 
of inhomogeneity, anisotropy and non-linearity of soil. The various results are synthesized in a case 
study referring to the response of two rigid massive foundations, and practical recommendations are 
made on how to inexpensively predict the response of foundations supported by actual soil deposits. 

INTRODUCTION 

The basic goal in the design of a machine foundation is to 
limit its motion to amplitudes which will neither endanger 
the satisfactory operation of the machine nor will they 
disturb the people working in the immediate vicinity. Thus, 
a key ingredient to a successful machine foundation design 
is the careful engineering analysis of the foundation response 
to the dynamic loads from the anticipated operation of the 
machine. Furthermore, when excessive motions of an 
existing foundation obstruct the operation of the sup- 
ported machinery, analysis is necessary in order to under- 
stand the causes of the problem and hence to guide 
appropriate remedial action. 

The theory of analysing the forced vibrations of shallow 
and deep foundations has advanced remarkably in the last 
15 years and has currently reached a mature state of 
development. A number of formulations and computer 
programs have been developed to determine in a rational 
way the dynamic response in each specific case. Numerous 
studies have been published exploring the nature of associ- 
ated phenomena and shedding light on the role of several 
key parameters influencing the response. Solutions are also 
presently available in the form of dimensionless graphs and 
simple mathematical expressions from which one can 
readily estimate the response of surface, embedded and pile 
foundations of various shapes and rigidities, supported by 
deep or shallow layered soil deposits. Clearly, the current 
state-of-the.art of analysing machine foundation vibrations 
has progressed substantially beyond the state of the art of 
the late 1960s which had been reviewed by Whitman and 
Richart in 19671 and by McNeil in 1969. 2 

In addition to the selection and application of analysis 
procedures to predict the response, the design of a machine 
foundation involves (1) the establishment of performance 
criteria, (2) the determination of dynamic loads, and (3) 

* Presented at the International Conference on Soil Dynamics and 
Earthquake Engineering, held at the University of Southampton, 
England, 13-15 July 1982. 

the establishment of the soil profile and evaluation of 
critical soil properties. Great progress has also been made in 
current years in developing/n situ and laboratory testing 
procedures to obtain representative values of dynamic soil 
parameters; a comprehensive review of the available experi- 
mental methods has been presented by Woods, 3 while 
Ozaydin et al., 4 Woods s and Richart 6 have summarized 
the present knowledge on the factors influencing the 
dynamic soil parameters. These developments in determin- 
ing material properties complement the advances in 
analysing foundation vibrations, and provide considerable 
justification for the use of sophisticated numerical formula- 
tions in the design of machine foundations. 

On the other hand, little if any progress has been made 
in reliably estimating dynamic machine loads and improving 
(through calibration with field data) the available perform- 
ance criteria. The state-of-the-art in these two areas has 
remained essentially unchanged during the last decade; 
reference is made to McNeil 2 and Richart, Woods and Hall 7 
for comprehensive reviews of these subjects. 

An additional and often overlooked step in machine 
foundation design is the post-construction observation of 
the foundation performance and its comparison with the 
predicted foundation behavior. Such comparisons are 
needed to calibrate new analysis procedures - a n  essential 
task in view of the simplifying assumptions on which even 
sophisticated formulations are based. 

In the final analysis, confidence in the advantages pro- 
vided by the use of  advanced methods of analysis can only 
be gained if these are shown to have the capability to pre- 
dict the field performance of actual machine foundations. 
Unfortunately, only a limited number of  case histories has 
so far been published evaluating state-of-the-art methods of 
analysis through detailed field observations. 

The objective of  this paper is to review the present state- 
of-the-art of determining the dynamic response of founda- 
tions subjected to machine-type loadings. The outline of 
the paper follows the chronology of historical develop- 
ments: from the dynamics of circular footings resting on 
the surface of an elastic halfspace to the behavior of cir- 
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cular and non-circular foundations embedded in a layered 
soil deposit and, finally, to the response of piles. Particular 
emphasis is accorded to the effects of dimensionless groups 
of geometric and material parameters on the dynamic 
stiffness functions and on the response of massive founda- 
tions. Normalized graphs and simple formulas are presented 
for a variety of idealized soil profiles and foundation geo- 
metries. The use of such data to estimate to translational 
and rotational motions of actual foundations in practice 
is clearly demonstrated and the various results are syn- 
thesized by means of a ease study. Practical recommenda- 
tions are then made on how to approximately obtain 
dynamic stiffness and damping coefficients for actual 
foundations, accounting only for the most crucial para- 
meters of the problem. 

Since the limiting motion for satisfactory performance 
of a machine foundation usually involves displacement 
amplitudes of a few thousandths or even ten-thousandths of 
an inch, soil deformations are quasi-elastic, involving negli- 
gible nonlinearity and no permanent deformations. Thus, 
most of the solutions reported herein assume linear iso- 
tropic viscoelastic soft behavior, with a hysteretic soil 
damping to model energy losses at those small strain 
amplitudes. However, some consideration is also given to 
the effects of soft nonlinearity on the vibration of strip 
footings under strong horizontal and rocking excitation. 
Moreover, the importance of  soil anisotropy and soil 
inhomogeneity are also considered. 

OLDER METHODS OF ANALYSIS 

In the past, machine foundations were frequently designed 
by rules-of-thumb without any analysis of the expected 
vibration amplitudes. For instance, one such design rule 
called for a massive concrete foundation of a total weight 
equal to at least three to five times the weight of the sup- 
ported machine(s). Although such a proposition may at 
first glance seem logical, it is in fact an obsolete one since 
it ignores the effect on the motion of all the other variables 
of the problem (e.g. type of excitation, nature of support- 
ing soil, and so on). For one thing, increasing the mass of 
a foundation decreases the resonant frequency of the 
system and, perhaps more importantly, reduces its effective 
damping. 7 Obviously, this is not what those applying the 
rule had in mind. 

Following the pioneering experimental studies carried 
out by the German Degebo in the early 1930s, a number of 
empirical analysis procedures were developed and used 
extensively at least until the 1950s. These methods focused 
on determining only the 'natural frequency' of a founda- 
tion. To this end, the concepts of 'in-phase mass' and 
'reduced natural frequency' were developed. The former 
assumes that a certain mass of soil immediately below the 
footing moves as a rigid body, in-phase with the foundation. 
The latter postulates that the 'natural frequency' is solely 
a function of the contact area, the soil bearing pressure and 
the type of  soil. 

Physical reality contradicts the concept of an 'in-phase 
mass'. No soil mass moves as a rigid body with the founda- 
tion. Instead, shear and dilational waves emanate from the 
footing-soil interface into the soil, causing oscillating 
deformations at the surface and carrying away some of the 
input energy. The factors that have an influence on these 
phenomena cannot be possibly accommodated through 
such an artificial concept. Indeed, the early attempts to 
obtain specific values of the 'in-phase mass' were frustrated 

by the sensitivity of this 'mass' to the foundation weight, 
mode of vibration, type of exciting force, contact area, and 
nature of the underlying soil. Apparently, there is absolutely 
no value in this concept and its use in practice may very 
well mislead the designer. 

Tschebotarioff's 'reduced natural frequency' method, 
based on the results of a few case histories, went a step 
beyond the original 'in-phase mass' methods) The 'reduced 
natural frequency' was defined as the 'natural frequency' 
multiplied by the square.root of the average vertical contact 
pressure and was given graphically as a function of the type 
of soft and of the contact area. Although this method was 
not without merit, it was often interpreted to mean that 
' the single most important factor in machine-foundation 
design was the soft bearing pressure'. 2 Thus, in more than 
one occasion, the design was based on soil bearing capacity 
values taken from local building codes! 

In addition to the aforementioned drawbacks, these old 
rules were only concerned with the resonant frequency, 
providing no information about vibration amplitudes that 
are primarily needed for design purposes. As a consequence, 
such rules are now obsolete and will not be further 
addressed in this paper. Reference is made to Richart et al. 7 
for more details on the subject. 

Dynamic Winkler model 
This model was introduced as an extension of the well 

known 'Winkler' or 'elastic subgrade reaction' hypothesis, 
which is still rather successfully employed in some static 
soil-foundation interaction problems. 9 In order to simulate 
the stiffness characteristics of the actual system, the model 
replaces the supporting soil by a bed of independent elastic 
springs resting on a rigid base. Plate bearing tests, con- 
ducted in the field, form the basis for evaluating the spring 
constants (often called 'coefficients of subgrade reaction'). 
On the basis of field measurements in the USSR, Barkan 1° 
has presented tables and empirical formulae with which one 
can readily estimate design values of the coefficient for 
several types of soft, for each possible mode of vibration 
(translational or rotational). He has also shown that, in each 
case, the dynamic coefficient is approximately equal to the 
ratio of applied pressure increment to the resulting displace- 
ment during static repeated loading tests. In these tests 
static loads 'similar' to the combined dead and live load of 
the actual foundation are first imposed, followed by 
repeated slow loading, at frequencies of the order of 0.001 
cps, i.e. much slower than those expected in reality. 

It is evident that this model can at least give some 
reasonable information on the low-frequency (near-static) 
response of a foundation. But since no radiation damping is 
included, the amplitude of motion at frequencies near 
resonance cannot be realistically estimated. It has been 
argued that by neglecting damping one obtains conservative 
estimates of the response and very good estimates of 
natural frequencies. In fact, this is the procedure currently 
incorporated into the 1970 'Indian Standard Code of Prac- 
tice for Design of Machine Foundations'. H There is little 
merit in this argument, however. For instance, the high 
damping values present in the translational modes of  vibra- 
tion (of the order of 50% of critical) do affect the 
'resonant' frequencies, in addition to drastically reducing 
amplitudes. Moreover, avoiding 'resonance' (by a safety 
factor of 2) in such cases is an unfortunate design recom- 
mendation which may lead to an overly conservative solu- 
tion. In other eases, especially when the rotational modes 
are of main concern, an unsafe design is quite possible since 
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the actual foundation stiffness at high frequencies may very 
well be appreciably smaller than the static stiffness used in 
the analysis (see, for example, Fig. 5). 

An improved version of the dynamic Winkler model 
(called 'Winkler-Voigt' model) places a set of independent 
viscous dampers in parallel with the independent elastic 
springs to provide the 'dynamic subgrade reaction'. Accord- 
ing to Barken and Ilyichev, 12 this model forms the basis of 
the 1971 USSR machine-foundation code. Again, however, 
the model itself provides no information on its spring and 
dashpot coefficients. These are instead backfigured from 
dynamic plate-load tests conducted in the field. Both the 
observed amplitude and frequency at resonance are utilized 
to backfigure the two coefficients. Analyzing the results of 
numerous field tests, Barkan and his co-workers found a 
discrepancy between the spring constants backfigured from 
resonance plate tests and from static repeated loading tests 
(described previously). They, thus, resorted to the 'in-phase 
soil mass' concept to essentially match the model constants 
obtained from the two types of tests. This added soil mass 
was found to depend on the size and embedment of the 
foundation and on the nature and properties of the soil 
deposit, for a given mode of vibration. 

It therefore appears that the 'Winkler-Voigt' model is 
a purely empirical one, requiring field static and dynamic 
plate-load tests for each particular situation. Such tests 
are not only very expensive and difficult to successfully 
conduct, but, moreover, they yield results which cannot be 
readily interpreted and extrapolated to prototype condi- 
tions. If I may slightly rephrase Gibson: 13 

'The model conspicuously lacks what all models 
should possess- predictive power.' 

The only possible explanation for the present-day use of 
dynamic Winkler models in machine-foundation analysis is 
the accumulation in some countries of a wealth of pertinent 
field data. Such data, often available in the form of tables, ~2 
can be directly utilized in practice, thus avoiding the 
burden of performing plate-load tests. Again, one should be 
very careful in picking up values for the coefficients from 
published field data. For it is practically impossible to 
ensure a similarity in all the crucial physical and geometric 
response parameters of the new prototype and of the old 
model foundation schemes. 

FUNDAMENTALS OF CURRENT METHODS OF 
VIBRATION ANALYSIS 

Historical perspective 
Modern methods of analysis of foundation oscillations 

attempt to rationally account for the dynamic interaction 
between the foundation and the supporting soil deposit. 
Cornerstone of the developed methods is the theory of 
wave propagation in an elastic or viscoelastic solid (con- 
tinuum). This theory has seen a remarkable growth since 
1904, when Lamb published his study on the vibration of 
an elastic semi-infinite solid (half-space) caused by a 
concentrated load ('dynamic Boussinesq' problem). Numer- 
ous applications, primarily in the fields of seismology and 
applied mechanics, have given a great impetus in the 
development of the 'elastodynamic' theory. Reissner in 
193614 attempted what is considered to be the first engin- 
eering application; his publication on the response of a 
vertically loaded cylindrical disk on an elastic halfspace 
marked the beginning of modern soil dynamics. The solu- 
tion was only an approximate one since a uniform distil- 

bution of contact stresses was assumed for mathematical 
simplification. Nonetheless, Reissner's theory offered a 
major contribution by revealing the existence of radiation 
damping-a  phenomenon previously unsuspected but 
today clearly understood. Every time a foundation moves 
against the soil, stress waves originate at the contact surface 
and propagate outward in the form of body and surface 
waves. These waves carry away some of the energy trans- 
mitted by the foundation on to the soil, a phenomenon 
reminiscent of the absorption of energy by a viscous 
damper (hence the name). 

For many massive foundations the assumption of a 
uniform contact stress distribution is an unrealistic one, for 
it yields a non-uniform pattern of displacements at the soil- 
footing interface. To closer approximate the rigid body 
motion of such foundations, a number of authors in the 
middle 1950s assumed contact stress distributions which 
produce uniform or linear displacements at the interface, 
under statically applied force or moment loadings, respec- 
tively. Thus, Sung Is and Quinlan ~6 presented results for 
vertically oscillating circular and rectangular foundations 
while Arnold et al. 17 and Bycroft aa studied both horizontal 
and moment loading of a circular foundation. These solu- 
tions are only approximate: in reality the pressure distribu- 
tions required to maintain uniform or linear displacements 
are not constant but vary with the frequency of vibration. 

The first 'rigorous' solutions appeared about ten years 
later when the vibrating soil-foundation system was 
analysed as a mixed boundary-value problem, with pre- 
scribed patterns of displacements under the rigid footing 
and vanishing stresses over the remaining portion of the 
surface. Introducing some simplifying assumptions regard- 
ing the secondary contact stresses ('relaxed' boundary), 
Awojobi et al. 19 studied all possible modes of oscillation of 
rigid circular and strip footings on a halfspace, by recourse 
to integral transform techniques. On the other hand, 
Lysmer 2° obtained a solution for the vertical axisymmetric 
vibration by discretizing the contact surface into concentric 
rings of uniform but frequency-dependent vertical stresses 
consistent with the boundary conditions. A conceptually 
similar approach was fonowed by Elorduy et al. 21 for ver- 
tically loaded rectangular foundations. 

Perhaps equally important with the aforementioned 
theoretical developments of this period was the discovery 
by Hsieh 22 and by Lysmer 2° that the dynamic behavior of a 
vertically loaded massive foundation can be represented by 
a single-degree-of-freedom 'mass-spring-dashpot' oscillator 
with frequency-dependent stiffness and damping coeffi- 
cients. Lysmer 2° went a step farther by suggesting the use 
of the following frequency-independent coefficients to 
approximate the response in the low and medium frequency 
range: 

4GR 3.4R 2 
Kv = ; Cv = ~ X / ~  (1) 

1 - - v  1--~ 

in which: Kv = spring constant (stiffness), Cv = dashpot 
constant (damping), R = radius of the circular rigid loading 
area, G and v = shear modulus and Poisson's ratio of the 
homogeneous halfspace (soil), and p = mass density of soil. 
Note that the expression for Kv in equation (1) is identical 
with the expression for the static stiffness of a vertically 
loaded rigid circular disk on a halfspace. 

The success of Lysrner's approximation (often called 
'Lysmer's Analog') in reproducing with very good accuracy 
the actual response of the system had a profound effect on 
the further development and engineering applications of the 
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'halfspace' theories. Richart and Whitman 23 extended 
Lysmer's Analog by demonstrating that all modes of 
vibration can be studied by means of lumped-parameter 
mass-spring.dashpot systems having properly selected 
frequency-independent parameters. The axisymmetric (ver- 
tical and torsional) oscillations of a cylindrical foundation 
can be represented by a 1-degree-of-freedom (1-dof) 
system described by: 

m£ + CYc + K x  = V( t )  (2) 

in which x, ~ and £ = the displacement, velocity and 
acceleration, respectively, of the vertically oscillating mass; 
P(t )  = the external dynamic force arising from the opera- 
tion of the machine(s). The lumped parameters are the 
equivalent mass, m, the effective damping, C, and the 
effective stiffness K. (For torsional oscillations m should be 
replaced by Iz, the effective mass polar moment of inertia 
and x should be interpreted as the angle of rotation around 
the vertical axis of symmetry.) On the other hand, the two 
antisymmetric modes of oscillation (horizontal translation 
and rocking) of  a cylindrical foundation are coupled and 
can be represented by a 2-dof system characterized by the 
effective mass and mass moment of inertia, the two 
effective values of damping (for swaying and rocking), and 
the two effective values of the stiffness (for swaying and 
rocking). 

Different values of the inertia, stiffness and damping 
parameters are needed for each one of these four modes of 
excitation. Whitman and Richart 23 suggested the choice of 
stiffnesses appropriate for low frequencies, and of average 
damping values over the range of frequencies at which 
resonance usually occurs. In order to obtain a good agree- 
ment between the resonant frequencies of the lumped- 
parameter and the actual system, they recommended that 
a fictitious mass (or mass moment of inertia) be added to 
the actual foundation mass (or mass moment of inertia). 
The need for such a recommendation stemmed not from 
the existence of any identifiable soil mass moving in-phase 
with the foundation, but rather from the fact that in 
reality the stiffnesses decrease with increasing frequency 
(see Figs. 5 and 7), instead of remaining constant and equal 
to the static stiffnesses, as the model assumes. In other 
words, instead of decreasing K, the lumped-parameter 
model increases m to keep the resonant frequency, co r, 
unchanged. Recall that co r is proportional to the square- 
root of (K/m).  

Whitman and Richart 23 and later Richart, Woods and 
Hall 7 and Whitman ~ presented expressions for these para- 
meters for all four vibration modes. Table 1 displays these 
expressions, which have enjoyed a significant popularity 
over the last decade. 

Primarily because of its simplicity, the lumped-para- 
meter approximation had a great impact on the application 
of the 'half-space' theory. It demonstrated that this rational 
theory can be cast into a tractable, simple engineering form, 
which can be used by the profession with hardly any 
greater difficulty than the older empirical procedures. 

Motivated to a large extent by the need to understand 
the phenomena associated with seismic soil-structure inter- 
action, the analysis of the dynamic response of foundations 
has been a subject of considerable interest throughout the 
1970s. A significant amount of related research has led to 
the development of  new formulations and computer 
programs, while numerous publications have studied the 
importance of  critical foundation, soil and loading para- 
meters and have presented graphs, tables and simple ex- 

Table I. Equivalent lumped parameters for analysis o f  circular 
foundations on elastic haifspace* 

Mode Vertical Horizontal Rocking Torsion 

4GR 8GR 8GR 3 16GR 3 
Stiffness: 

1 - -v  2 - -v  3 ( l - - v )  3 

m(1--v) m(2--~) 31x(1--v) I z 
Mass ratio r~: 

4pR 3 8pR 3 8pR s pR s 

0.425 0.29 0.15 0.50 
Damping ratio: 

th 112 th 1/2 (1 + rh) th I'~ l + 2 t ~  

FictRious added 0.27m 0.095m 0.24I  x 0.241 z 
mass: & ~ ~ 

Ix,  I z = mass moments  of  inertia around a horizontal, vertical axis, 
respectively; damping ratio=C/Ccr where Ccr=2(£m) t/2 or 
Ccr = 2(KI) "2 for translational or rotational modes of vibration, 
with I = I x or 1 z for rocking or torsion, respectively. 

pressions, suitable for direct use in practical applications. 
It is worth mentioning some of the most important contri- 
butions to the current state of the art. 

Newly developed (mid-1960s) mathematical techniques 
to solve mixed boundary-value elastodynamic problems 
were utilized by Luco et  al. 2s and Karasudhi et al. 26 to 
obtain 'exact' numerical solutions for all modes of vibration 
of strip footings on a halfspace, and by Luco et  al. 27 and 
Veletsos et al. 2~29 to extend the available halfspaee solu- 
tions for circular foundations to the high frequency range 
and, also, to a viscoelastic material with linear hysteretic 
damping. The development of  dynamic finite-element 
formulations with energy absorbing ('viscous' and 'consist- 
ent') lateral boundaries prompted the study of the response 
of surface and embedded foundations supported by a 
layered soil stratum. 3°-34 Only plane-strain and axisym- 
metric geometries could be handled with these finite 
element formulations, however, and the presence at a 
relatively shallow depth of  a non-compliant rock-like 
material underlying the stratum was an unavoidable require- 
ment regardless of whether such rock did actually exist. 

On the other hand, Luco 3s and Gazetas ~ presented 
analytical solutions for circular, strip and rectangular 
foundations on the surface of a layered halfspace or a 
layered stratum (i.e. with or without a rigid rock as the 
last layer, respectively). Utilizing these formulations they 
offered results 37-39 which bridged the gap between the two 
previously studied extreme prof i les- the  halfspace and the 
stratum-on-rigid-base. At about the same time, Novak 4° 
obtained approximate analytical solutions for circular 
foundations embedded in a halfspace, by deriving closed- 
form expressions for the dynamic stiffness and damping 
coefficients along the vertical sides of the foundation. 
Later on this method was easily adapted to study the 
dynamic response of piles. 4~-43 

In more recent years research efforts have been pri- 
marily directed to determining solutions: (a) for rigid 
foundations of rectangular and arbitrary shapes; 44-4s (b) for 
foundations of Finite flexural rigidity; 49-sl (c) for founda- 
tions on inhomogeneous and on anisotrepic soils; s2-ss and 
(d) for foundations on nonlinear (Ramberg-Osgood) 
soils, s6 Furthermore, a very substantial amount of research 
work has been devoted to the dynamic behavior of single 
(floating and end-bearing) piles embedded in homogeneous, 
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inhomogeneous or layered soft deposits, and the first 
attempts have already been made to obtain solutions for 
dynamic loaded pile groups. For comprehensive lists of 
related references, see Dobry et at., s7 Kagawa et al., ss and 
Novak. s9 

Impedance and compliance functions: definition and 
physical interpretation 

An important step in current methods of dynamic 
analysis of rigid massive machine foundations is the deter- 
mination (using analytical or numerical methods) of the 
dynamic impedance functions, K(~) ,*  of an 'associated' 
rigid but massless foundation, as a function of the excita- 
tion frequency, ~o. As shown in Fig. 1 the 'associated' 
foundation-soft system is identical (in both material prop- 
erties and geometry) with the actual system, except that 
the foundation mass is taken equal to zero. It will be 
explained in the following section how, once the harmonic 
response of such a massless foundation has been deter- 
mined, the steady-state response of the massive foundation, 
or of any structure supported on it, may be evaluated 
using standard procedures. In addition, the transient 
response to non-harmonic machine forces can also be 
evaluated by recourse to Fourier analysis and synthesis 
techniques. 

For each particular harmonic excitation with frequency 
~o, the dynamic impedance is defined as the ratio between 
the steady-state force (or moment) and the resulting dis- 
placement (or rotation) at the base of the massless founda- 
tion. For example, the vertical impedance of a foundation 
whose plan has a center of symmetry is defined by:* 

R~(t) 
x o  = - -  ( 3 )  

V(t) 

in which R~(t) = R v exp (i6ot) is the harmonic vertical force 
applied at the base of the disk, and v(t) = v exp (i~ot) is the 
uniform harmonic settlement of the soil-foundation inter- 
face. It is evident that R~ is the total soft reaction against 
the foundation; it is made up of the normal stresses against 
the hasemat plus, in case of embedded foundations, the 
shear stresses along the vertical side walls, as illustrated in 
Fig. 1. 

Similarly one may defme the torsional impedance, Kt, 
from the torsional moment and rotation; the horizontal 
impedances, K a, from the horizontal forces and displace- 
ments along the principal axes of the base; and the rocking 
impedances, Kr, from the moments and rotations around 
the same horizontal principal axes. However, since hori- 
zontal forces along the principal axes produce rotations in 
addition to horizontal displacements, cross-horizontal- 
rotational impedances Krh may also be defined; they are 

D 0 0 0 ~ O 0 0 0 
B • 

rigid, massless 
foundation 

L 
. . . . . • . . o. . -  

0 0 0 0 0 ~ 0 g B 0 

Figure 1. Machine foundation and the associated rigid 
massless foundation 

* Bold letters are used in the text for impedances, compliances and 
some stiffness and damping coefficients (equation (17)); in the 
figures, calligraphic characters are used for these quantities. 

usually negligibly small in case of surface and very shallow 
foundations, but their effect may become appreciable for 
greater depths of embedment. 

Referring to equation (3), it is interesting to note that 
dynamic force and displacement are generally out of phase. 
In fact, any dynamic displacement can be resolved into two 
components: one in phase and one 90 ° out of phase with 
the imposed harmonic load. It is convenient then to intro- 
duce complex notation to represent forces and displace- 
ments. As a consequence, impedances may also be written 
in the form :* 

Ka(w ) = Ka](~o ) + iKa2(w ) (4) 

a = v, h, r, hr, t; i = x / = l  

The real and imaginary components are both functions 
of the vibrational frequency to. The real component reflects 
the stiffness and inertia of the supporting soil; its depen- 
dence on frequency is attributed solely to the influence 
which frequency has on inertia, since soil properties are 
essentially frequency independent. The imaginary com- 
ponent reflects the radiation and material damping of the 
system. The former, being the result of energy dissipation 
by waves propagating away from the foundation, is fre- 
quency dependent; the latter, arising chiefly from the 
hysteretic cyclic behavior of soil, is practically frequency 
independent. 

A very instructive analogy between the dynamic response 
of a simple 1-dof oscillator and of a three-dimensional 
massless foundation.soft system has been drawn by Roesset. 6° 
Assuming a harmonic excitation P ( t ) =  Poexp(iwt),  the 
steady-state response x(t)  = Xo exp (i~t) of the 1-dof oscil- 
lator may be obtained by substitution into equation (2); 

P(t) 
( K - - m ~ : )  + iC~ = (5) 

x(t) 
Contrasting equations (5) and (3) prompts the definition 

of a dynamic impedance function for the 1-dof mass- 
spring-dashpot system: 

K = ( K - - m ~  2) + iCco (6) 

and, by comparison with equation (4): 

K1 = K - - m w  2 (7) 

K2 = C~o (8) 

In other words, the dynamic impedance of our familiar 
1-dof oscillator is indeed a complex number with a fre- 
quency dependent real part representing the stiffness and 
inertia characteristics of the system, and a frequency 
dependent imaginary part expressing the energy loss in the 
system. Therefore, it is quite natural to express the dynamic 
impedance of soft-footing systems in a complex form, as 
done in equation (4). 

Having, thus, established the analogy between 1-dof and 
massless footing-soft systems, let equation (6) for the 
1- dof be rewritten as: 

o r  

K = K. {(1 -- ~---2]+ i2~ ¢° } (9a) 

K = K.  {k + iwc  s} (9b) 

in which the critical viscous damping ratio is: 

C C 
. . . .  (10) 

Ccr 2K/~on 
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! ! 

~I~ n ~ ~/~n----.~- 
I i I I 

li~ I 0,5 1 

Figure 2. Dynamic stiffness and damping coefficients o f  
a I-dofsimple oscillator 

the natural frequency ~n = (K/m) 1/2, k = ( 1 -  ~2/con 2) and 
c s = C/K. Equation (9b) implies that the dynamic imped- 
ance of a 1-dof simple oscillator may be expressed as a 
product of  the spring constant K, which happens to be the 
static stiffness of the system, times a complex number 
k +i¢oc s, which encompasses the dynamic characteristics 
of the system (inertia and viscous damping) and is here- 
after called 'dynamic part' of the impedance. At zero 
frequency the dynamic part becomes a real number, equal 
to 1, and the impedance coincides with the static stiffness 
K of the simple system, k and cs are named respectively 
stiffness and damping coefficients and their variation with 
frequency for the 1-dof's is plotted in Fig. 2. Notice that 
k decreases as a second degree parabola with increasing 
t~, whereas c s remains constant. 

It should not surprise the reader that the actual varia- 
tion with t~ of the stiffness and damping coefficients, kv 
and csv, of a vertically vibrating circular disk on an elastic 
halfspace is indeed very similar to the variation of the 
k and c s of the 1-dof system! (To see this similarity just 
compare Fig. 2 to Fig. 5(a).) However, in general, k and c s 
of a foundation-soil system may vary in a rather compli- 
cated manner with co, depending primarily on the mode 
of vibration, the geometry, rigidity and embedment of the 
foundation, and, t'mally, the profile and properties of  the 
supporting soil deposit. Figures 5, 8, 9, 10 and 20 may be 
previewed to conf'Lrm this statement. Nonetheless, in all 
cases, the dynamic impedance functions can be expressed 
as products of a static and a dynamic part, as described 
by equation (9b). Alternatively, a dimensionless frequency 
factor is often introduced: 

a o  = - -  (11) 
Vs 

in which: B = a critical foundation dimension like, e.g., 
the radius of a circular foundation or half the width of a 
strip or a rectangular foundation; and Vs = a characteristic 
shear wave velocity of the soil. Combining equations (9b) 
and (11) allows the impedance to be case in the form: 

K = K(k  + iaoc) (12) 

with 

Vs 
- -  ( 1 3 )  C=Cs B 

Since both ao and c are dimensionless quantities, equation 
(12) is strongly preferred to equation (9b) in presenting the 
results of dynamic analyses. 

Let it now be assumed that a 'hysteretic damper' is 
added in-parallel with the spring and the 'viscous damper' 

to support the mass Of the simple oscillator. This damper 
is described through a hysteretic damping ratio, ~. During 
each cycle of motion it dissipates an amount of  energy 
proportional to the maximum strain energy, I¢, of the 
system: 

AW h = 4n~W (14) 

in which W = (½)Kx~. On the other hand, during a cycle 
of motion the viscous damper has consumed an amount 
of energy equal to: 

AW~ = ~C~,~o 2 

{D 

= 4 ~ 1 3  - -  W ( 1 5 )  
6 0  n 

so that the total dissipated energy, AW = AW h + AW v, as 
a function of W is: 

'A"W = 4"tr('8 ~ +~ ) I¢ (16) 

This expression suggests that the simple addition rule, 
+ ~%o/wn, may be used to obtain the 'effective' damping 

ratio of a system possessing both viscous, 13, and hysteretic, 
~, damping. A w~orating foundation-on-soil is one such 
system, with its radiation damping being of a viscous nature 
while the material damping is of the hysteretic type. 

The presence of material damping in the soil affects both 
the stiffness and damping coefficients, k and c. In an 
attempt to isolate the effects of hysteretic material damp- 
ing, an alternative expression to equation (12) is often 
used for the dynamic impedance: 

K = K(k + iaoc).(1 + 2i~) (17) 

Recalling the so-called 'correspondence principle, 6~ one 
may anticipate that the new coefficients, k and c, are 
independent of material damping. If this were true, it 
would then be sufficient to obtain solutions for a purely 
elastic soil and then extrapolate the results to soils with 
any hysteretic damping ratio by multiplying the undamped 
impedances by 1 + 2i~. Indeed, for very deep soil deposits 
which can be modeled as a halfspace the above 'principle' 
is reasonably accurate and has been repeatedly utilized to 
obtain solutions for damped soils. 29'62,6a However, in the 
case of  a shallow stratum on rigid rock both k and c are 
fairly sensitive to the assumed material damping ratio (see 
Fig. 9, for example); this discredits to a large extent the 
'correspondence principle', as Kausel 3a had first noticed. 

None the less, it is convenient to express the impedance 
functions in the form of equation (17), and this practice is 
frequently followed in the sequel. Alternatively, however, 
equation (12) is also used in some cases. 

Dynamic compliance functions 
Also given the names dynamic 'displacement' functions 

and dynamic 'flexibility' functions, they are essentially the 
ratios between dynamic displacements (or rotations) and 
the dynamic reactive forces (or moments) at the base of a 
foundation. They were first introduced by Reissner. ~4 
Following the previous discussion, it is convenient to 
express each compliance using complex notation: 

F a = Fal(¢o ) + iFa2(co ) ( lg)  

a = v, h, r, hr, t 

The real and imaginary parts represent the displacement 
components which are in-phase and 90°-out.of-phase with 
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the reactive force, respectively, and they both are functions 
of frequency, as discussed in detail previously. For a 
foundation which in plan has a center of symmetry, the 
vertical and torsional compliances are simply the inverse 
of the vertical and torsional impedances: 

1 
F b = - -  ; b = v , t  (19a) 

Kt, 

However, due to the coupling between rocking and 
swaying motions, the corresponding compliances should 
be obtained by inverting the matrix of impedances: 

The following alternative form to equation (18) is also 
frequently used in presenting compliance functions: 

1 
Fo = ~ [f.l(~o) + if.2(~o)] (20) 

where K a is the corresponding static stiffness. 

Computational procedures for  determining 
impedance/unctions 

Several alternative computational procedures are pre- 
sently available to obtain dynamic impedance functions for 
each specific machine-foundation problem. The choice 
among these methods depends to a large extent on the 
required accuracy, which in turn is primarily dictated by 
the size and importance of the particular project. Further- 
more, the method to be selected must reflect the key 
characteristics of the foundation and the supporting soil. 
Specifically, one may broadly classify soil-foundation 
systems according to the following material and geometry 
characteristics: 

1. The shape of the foundation (circular, strip, rect- 
angular, arbitrary). 

2. The type of soil profile (deep uniform deposit, deep 
layered deposit, shallow layered stratum on rock). 

3. The amount of embedment (surface foundation, 
embedded foundation, deep foundation). 

4. The flexural rigidity of the foundation (rigid founda- 
tion, flexible foundation). 

Two computationally different approaches have been 
followed over the years to obtain the dynamic impedances 
of foundations with various characteristics: a 'continuum' 
approach, which led to the development of analytical and 
semi.analytical formulations, and a 'discrete' approach, 
which resulted in the development of finite-difference and, 
primarily, finite-element models. In the past (mid-1970s), 
considerable controversy was held about the relative 
merits and deficiencies of each approach and some extreme 
and unjustified positions were advocated. Today, it is quite 
clear that both procedures, if correctly understood and 
implemented, are very useful tools in analysing the behavior 
of dynamically loaded foundations. Moreover, they yield 
very similar results if they are appropriately used to solve 
the same problem. Hadjian et al. 64 and Jakub et al. 6s have 
presented excellent discussions and comparative studies on 
this subject. The following paragraphs intend to rather 
briefly introduce the most important analytical, semi- 
analytical and numerical procedures which are currently 
available to the machine-foundation analyst. The list is by 
no means exhaustive, and the emphasis is on discussing the 
strong and weak points of each method. 

'Continuum' methods. Starting point of all the devel- 
oped formulations is the analytical solution of the pertinent 
wave equations governing the imposed deformations in each 
uniform soil layer or halfspace. However, the boundary 
conditions at the soil-footing interface are handled differ- 
ently by the various methods. In that respect, one may very 
broadly classify the available continuum formulations into 
analytical and semi-analytical solutions. 

The known analytical solutions simplify the mechanical 
behavior of the soil-footing contact surface by assuming a 
'relaxed' boundary. That is, no frictional shear tractions can 
develop during vertical and rocking vibrations, while for 
horizontal vibrations the normal tractions at the interface 
are assumed to be zero. This assumption has been necessary 
to avoid the more complex mixed boundary conditions 
resulting from the consideration either of a perfect attach- 
ment between foundation and soil ('rough' foundation) or 
of  a contact obeying Coulomb's friction law (an even more 
realistic idealization). 

By recourse to integral transform techniques (involv- 
ing Hankel or Fourier transforms for axisymmetric or 
plane-strain geometries, respectively) the relaxed boundary 
conditions yield sets of dual integral equations for each 
mode of vibration. Each set is then reduced to a Fredholm 
integral equation which is finally solved numerically. 

Such analytical solutions have so far been published for 
surface circular and strip foundations of infinite flexular 
rigidity supported by an elastic or viscoelastic half space ;26-29 
for circular foundations on a layered elastic or viscoelastic 
soil deposit; 3s'~ for circular foundations of finite flexurat 
rigidity supported on a halfspace; 49 for circular foundations 
on a cross-anisotropic halfspace; 67 and even for vertically 
loaded rigid rectangular foundations on a halfspace. 4s 

The semi-analytical type solutions are based on the 
determination of  the displacements at any point within the 
footing-soil interface, caused by a unit normal or shear 
time-harmonic force applied at another point of the same 
interface. Then, by properly discretizing the contact sur- 
face, the matrix of dynamic influence or Green's functions 
is assembled and the problem is solved after imposing the 
rigid-body motion boundary conditions. Several different 
techniques (in essence different integration procedures) 
have been formulated to carry out these steps of the 
analysis. For example, Elorduy et al. 21 and Whittaker 
et al. s° utilized Lamb's solution for a point loaded half- 
space; Luco et alfl 7 obtained pairs of Cauchy type integral 
equations which they numerically solved after reducing to 
coupled Fredholm equations; Gazetas 36 and Gazetas et al. 3a 
utilized a fast Fourier transform algorithm; Wong 68 and 
Wong et al. 44 used the solution for a uniformly loaded 
rectangle; and so on. 

For the purpose of this discussion, one may list as a 
semi-analytical solution the formulation of Dominguez and 
Roesset, a7 who applied the so-called 'boundary integral 
equation' or, more simply, 'boundary element' method 
to obtain dynamic impedance functions of rectangular 
foundations at the surface of, or embedded in a halfspace. 
To this end, they utilized the closed-form solution to the 
'dynamic Kelvin' problem of a concentrated load in an 
infinite medium, 69 and discretized either only the contact 
surface, in the case of surface footings with 'relaxed' 
boundaries, or both the contact and the surrounding soil 
surfaces, in the cases of embedded footings and of surface 
footings 'adhesively' attached to the soil. 

So far rigorous semi-analytical solutions have been pub- 
lished for rigid strip foundations on the surface of a layered 
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halfspace or stratum-on-rock; as' 38, ~9, 7o for rlgid rectangular 
foundations on a halfspace; 21' 36' 44' 46-4a' ~,6s,6a, 71 for rect- 
angular foundations of finite flexural rigidity; s°' sl for rigid 
rectangular foundations embedded in a halfspace; 47 and, 
f'mally, for rigid foundations of arbitrary shape. 44 

Note that approximate semi-analytical procedures have 
already been developed to obtain the impedances of cylin- 
drical embedded foundations and circular piles, a°-43,sT'Tz 
These procedures assume that only horizontally propa- 
gating waves generate at the vertical foundation-soil inter- 
face, and they neglect the coupling between forces and 
displacements at various points. Instead, they only compute 
the displacement at the point of application of the load. 
Thus, in effect, the soil is modeled as a Winlder medium, 
the spring and dashpot characteristics of which are esti- 
mated from realistic, albeit simplified, wave propagation 
analyses. 

Finally, several similar approximate analytical formula- 
tions have been developed, again for deeply embedded 
cylindrical foundations and end-bearing piles in soil 
strata. 73-7s These procedures attempt to analytically solve 
the governing wave equations for the stratum, by neglecting 
the secondary component of displacement (i.e. the vertical 
component for lateral vibrations or the radial one for 
vertical vibrations). The boundary conditions at the soil- 
pile interface are analytically enforced by  expanding the 
contact pressure distribution to an infinite series in terms of 
the natural modes of vibration of the soil layer. 

'Discrete' models. Dynamic finite difference and finite 
element models have been developed for problems of 
complicated geometry which are not easily amenable to 
analysis with continuum type, analytical or semi-analytical 
formulations. Today, finite difference formulations such 
as those proposed by Anget  al., 79 Agabein et al., s° Krizek 
et al., sl and Tseng et al., s2 fred very little if any application 
in solving foundation vibration problems, and, therefore, 
will not be further addressed in this paper. On the other 
hand, several f'mite element formulations and computer 
programs are presently widely available and frequently 
used in analysing foundation oscillations. 

The use of finite elements in dynamic foundation prob- 
lems is different from other applications of finite elements 
in statics and dynamics in that soil strata of infinite extent 
in the horizontal and even in the vertical direction must be 
represented by a model of a finite size. Such a finite model 
creates a fictitious 'box' effect, trapping the energy of the 
system and distorting its dynamic characteristics. To avoid 
this problem, wave absorbing lateral boundaries are intro- 
duced to account for the radiation of energy into the outer 
region not included in the model. Two main types of such 
boundaries are available. The approximate 'viscous' boun- 
dary proposed by Lysmer etal. s3 and extended by Valliappan 
et al. ~ must be placed at some distance from the founda- 
tion. The alternative 'consistent' boundary developed by 
Waas at and extended by Kause133 is very effective in accur- 
ately reproducing the physical behavior of the system, and 
it also results in considerable economy by being placed 
directly at the edge of the foundation. This 'consistent' 
boundary provides a dynamic stiffness matrix for the 
medium surrounding the plane or cylindrical vertical cavity 
which is assumed to occupy the central region under the 
strip or circular foundation. This matrix corresponds 
exactly to the boundary stiffness matrix that would be 
obtained from a continuum type formulation. 

Unfortunately, 'consistent' boundaries have been devel- 
oped only for plane-strain and axisymmetric (cylindrical) 
geometries. No such boundary is available for truly three- 

dimensional (3D) geometries, in cartesian coordinates. 
Thus, to solve 3D problems a fmite-element model must 
resort to 'viscous' or elementary boundaries placed far 
away from the loaded area. In this way the fictitiously 
reflected waves are dissipated through hysteresis and fric- 
tion (material damping) in the soil before they return to 
the foundation region. However, the cost of such analyses 
is prohibitive and truly 3D solutions are very rarely used 
in practice. An attempt has been made to modify a 2D 
computer program by adding viscous dashpots to the 
lateral faces of its plane-strain elements, in order to simu- 
late the radiation damping of 3D situations, ss Notwith- 
standing the popularity enjoyed by this pseudo-3D model, 
its only difference from the 2D model is that it introduces 
an artificial increase in damping, which cannot possibly 
reproduce all aspects of the true 3D behavior. In fact, in 
some cases the actual 3D radiation damping in rocking is 
over-estimated rather than under-estimated by a 2D model; ~ 
thus by adding viscous dashpots the situation may worsen 
instead of improving, s6, es 

Consequently, today, two types of finite-element models 
are practically available: plane-strain 2D models appropriate 
for strip footings or elongated rectangular structures; 34,s4,s7 
and 3D axisymmetric.geometry models appropriate for 
cylindrical foundations and nearly square structures. 31' 33, ss 

It is noted that embedded foundations and layered soil 
strata can be routinely handled with all the f'mite-element 
formulations. On the other hand, the presence of a fixed 
bottom boundary is required by most of the available 
codes. This is hardly a drawback if a stiff, rock-like stratum 
does exist at a relatively shallow depth. Otherwise, when 
the supporting soil deposit is very deep, the cost of a 
realistic finite-element analysis may become substantial 

Conclusion. With the available analytical, semi-analytical 
and f'mite-element computer programs the foundation vibra- 
tion analyst may obtain solutions for foundations of various 
shapes, surface or embedded, supported by deep or shallow 
soft deposits. In selecting the most appropriate code for 
each specific situation, attention should first focus on the 
depth of embedment and the nature of the underlying soft. 
When dealing with very shallow footings on deep deposits 
which can be well reproduced by a small number of layers 
with different properties, continuum type analytical or 
semi-analytical formulations are clearly more advantageous; 
the choice of the most appropriate among them will be 
mainly dictated by the shape of the footing (strip, circular, 
rectangular, arbitrary) and the desired degree of accuracy. 
On the other hand, for embedded foundations in a shallow 
stratum or whenever a large number of layers with sharply 
different properties exists below the footing, finite element 
models are particularly appropriate. 

Furthermore, attention should be accorded to the opera- 
tional frequencies of the machine and the inertia character- 
istics of the foundation. At very high frequencies of vibra- 
tion, f ,  discrete models may become very costly; because, 
in order to transmit high frequencies, a large number of 
sufficiently small, sized elements must be used. For instance, 
it is usually recommended that the maximum dimension of 
an element should not exceed X/8, where ~, = V/f  is the 
wavelength in a particular soil layer having shear wave 
velocity V. Therefore, with high frequencies, analytical 
models may become advantageous. Notice, though, that the 
computer costs of semi-analytical formulations may also be 
adversely affected by a large increase in the operational 
frequency, since they, too, discretize the contact area or 
the whole uppermost surface. 

Regarding the inertia characteristics of the foundation, 
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the author and Roesset 39 have demonstrated that for heavy 
foundations (i.e. with high mass ratios) small errors in 
modeling the different soil layers are unimportant and one 
can safely base the design on available halfspace solutions 
or on the results of analytical type computer programs. 
On the other hand, relatively light foundations are quite 
sensitive to the existence of competent rock at a shallow 
depth and of different soil layers beneath the footing, thus 
requiring a good soil exploration followed by finite-element 
analyses. These conclusions are further illustrated and 
generalized in a later section of this paper. 

In addition to the existing computer programs numerous 
solutions have been published in the literature in the form 
of dimensionless graphs, tables and simple formulae for 
impedance and compliance functions of foundations with 
several different geometries, depths of embedment and 
stiffness characteristics, supported by various idealized soil 
profiles (halfspace, stratum, etc.). These solutions can give 
very satisfactory results in many practical cases and are 
especially valuable in conducting preliminary analyses and 
parameter sensitivity studies. One of the goals of this state- 
of-the-art paper is to present and discuss the most signi- 
ficant of these available solutions. Before doing this, 
however, it is expedient to illustrate how the impedance 
functions may be utilized to obtain the dynamic response 
of rigid massive foundations. 

Use o f  impedance functions: response o f  massive machine 
foundan'ons 

The first step in analysing the response of a massive 
machine foundation is to evaluate the pertinent dynamic 
impedances at the anticipated frequency, or range of fre- 
quencies, of the machine. This is done either by utilizing 
existing discrete or continuum type formulations, or by 
resorting to published solutions available in the soil dyn- 
amics literature. The use of dynamic impedance to obtain 
the response is illustrated herein. 

Figure 3 portrays a massive, rigid foundation having equal 
depth of embedment along all the sides and possessing two 
orthogonal vertical planes of symmetry, the intersection of 
which defines a vertical axis of symmetry. The foundation 
plan, having two axes of symmetry, may be of any axi- 
symmetric or orthogonal shape, including the infinitely 
long strip (2D geometry). For such foundations, vertical 
and torsional oscillations are uncoupled, while horizontal 
forces and moments along and around the principal axes 
produce displacements and rotations only along and around 
the same axes. Thus, with the notation of Fig. 3, the equa- 
tions of motion in vertical translation v(t),  torsional rota- 
tion O(t), and coupled horizontal translation h(t)  and 
rocking r(t),  all referred to the center of gravity of the 
machine-foundation system, are respectively: 

m . ~)(t) + R , ( t )  = Q~(t) (21) 

Iz" O(t) + Tz(t  ) = Mz(t  ) (22) 

m.  h(t) + R n (t) = Qh (t) (23) 

Iox. E(t) + Tr( t ) - -Rh( t )  . z e = Mr(t ) (24) 

in which: m = total foundation mass; Iox = mass moment 
of  inertia about a principal horizontal axis passing through 
the center of gravity; I z = mass moment of inertia around 
the vertical axis of symmetry;R n, T z, R n and T r = vertical, 
torsional, horizontal and rocking reactions of the soil acting 
at the center of the foundation base (remember Fig. lb); 
Qn, Mz, Qh and M r = vertical, torsional, horizontal and 
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rocking exciting forces and moments, acting at the center 
of gravity and resulting from the operation of the machine. 

As already mentioned, only the steady-state response 
due to a harmonic excitation is of interest here. Not only 
because most machines usually produce unbalanced forces 
which indeed vary harmonically with time (rotary or recip- 
rocating engines), but also because non-harmonic forces 
(such as those, for example produced by punch presses and 
forging hammers) can be decomposed into a large number 
of sinusoids through Fourier analysis. Therefore, the excita- 
tions may be written as: 

Qa = Qa exp [i(~ot + Ca)] a = v, h (25) 

M a = M a exp [i(wt + Ca)] a = z, r (26) 

in which the amplitudes Qa and M a are either constants or 
(more frequently) proportional to the square of the opera- 
tional frequency ~ = 2rrf; ~a are the phase angles of the 
four excitations, v, h, r and z. 

With the excitation forces described by equations (25)- 
(26), the steady-state motions may be cast in the form: 

v(t) = v .exp(icot); v = vl + iv2 (27) 

O(t) = 0. exp(i6ot); 0 = 01 + i02 (28) 

It(t) = h .  exp (iwt); h = h~ + ih2 (29) 

r(t)  = r .exp(i~t) ;  r = rl + Jr2 (30) 

in which: v, 0, h and r are complex, frequency-dependent 
displacement and rotation amplitudes at the center of 
gravity. Note that equations (27)-(30) do not  by any 
means imply that the four components of motion are all 
in phase, nor that the phase-angles between the corre- 
sponding excitations and motions are equal to Ca (equations 
(25)-(30)). Instead, the true phase angles Ca are 'hidden' 
in the complex form of each displacement component. For 
instance, the vertical motion will exhibit: 

¢Ja = arctan (v2/vO (31) 
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in which 7)1 and v2 axe the real and imaginary parts of v 
(equation (27)), while its amplitude is of a magnitude: 

I vl = (v 2 + v2) '/2 (32)  

Also, since Qa and M a in equations (25)-(26) are real quan- 
tities, the phase lags between excitations and motions will 
be simply equal to Ca -- ~ka- 

Using similar arguments with regard to the soil reactions, 
one may, without loss of generality, set: 

R a = R a • exp (loot) a = v, h (33) 

T a = T a • exp (it~t) a = z, r (34) 

whereby the complex amplitudes R a and T a are related to 
the complex displacement and rotation amplitudes through 
the corresponding dynamic impedances Ka, a = v, h,  r, hr, 
t (see equations (3)-(4)). Recalling that the latter are 
referred to the center of the foundation base, one can 
promptly write: 

R v = Ko. v (35) 

Tz = Kt" 0 (36) 

Rh = Kh " (h --Zer ) + Khr" r (37) 

T r = Kr . r  +Khr.  (h - - zer  ) (38) 

Substituting equations (25)-(30) and (33)-(38) into the 
governing equations of motion (21)-(24) and solving the 
resulting system of four algebraic equations yields the 
following complex-valued displacement and rotation 
amplitudes at the center of gravity: 

Qv" exp (i~v) 
v = (39) 

Xt,(¢o ) - m ~  2 

M z .exp (i~z) 
0 = (40) 

Kt(co ) --Iz602 

h = {K~ .Q  h exp(i~h) - - K ~ r . M r e x p ( i ~ r ) } . N  (41) 

r = ( X t  "Mr exp (i~r)-K~rQh exp (i~h)}-N (42) 

in which the following substitutions have been performed: 

Xt  = X h ( ~ ) - - m ~  z (43) 

K~r = Khr(co)--Kh(CO) Zc (44) 

K* = Kr(co)--IoxcO 2 + Kh(t~ ) Z2c - 2Khr(co ) z c (45) 

and, finally, 

N = (XtK*--K~h2) - '  (46) 

Notice that, for a particular frequency w, determination of 
the motions from equations (39)-(42) is a straightforward 
operation once the dynamic impedances are known. Of 
course, the computations are somewhat tedious if per- 
formed by hand, since complex numbers are involved; but 
even with small microcomputers the calculations can be 
done routinely, at a minimal cost• 

Therefore, the author proposes that this procedure 
(equations (39)-(42), in connection with an appropriate 
evaluation of impedances at the frequency(ies) of interest, 
should be used in machine foundation analysis in place of 
the currently popular 'equivalent lumped frequency- 
independent-parameter' approach. 

PRESENTATION OF RESULTS FOR SURFACE AND 
EMBEDDED FOUNDATIONS 

The subsequent four sections of the paper present a com- 
prehensive compilation of characteristic numerical results 
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Figure 4. (a) The three soil profiles studied; (b ) definition 
o f  geometric parameters 

for the dynamic impedances (or compliances) of massless 
foundations, pertaining to all poss~le (translational and 
rotational) modes of w~oration. These results can be directly 
used in equations (40)-(43) to make satisfactory and inex- 
pensive predictions of the dynamic behavior of machine 
foundations in many practical cases, without the need to 
resort to costly computer programs for evaluating the 
impedances; this should be of especially great value in 
preliminary design calculations. 

A second, equally important objective of the presenta- 
tion is to assess the significance of various phenomena and 
to illustrate the role of key dimensionless geometric and 
material parameters on the response. It is thus hoped that 
the reader can gain a valuable insight into the mechanics 
of foundation vibrations. 

Results are presented for three categories of idealized 
soil profiles (Fig. 4): the halfspaee, the uniform stratum 
on rigid base and the layer on top of a halfspace. These 
models represent a wide spectrum of actually encountered 
soil profiles and are simple enough for their geometry to be 
described in terms of a single quantity, namely, the thick. 
hess H of the uppermost layer. (For the halfspace H-~**.) 
For most problems considered, the following groups of 
dimensionless parameters which appreciably influence the 
dynamic impedances have been identified: 

(a) the ratio H/B of the top layer thickness,/4, over a 
critical foundation-plan dimension, B; the latter 
may be interpreted as the radius, R, of a circular 
foundation or half the width of a rectangular or a 
strip foundation 

(b) the embedment ratio D/B, where D is the depth 
from the surface to the horizontal soil-footing inter- 
face 
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(c) the shape of the foundation plan: circular, strip, 
rectangular, circular ring; in the last two cases the 
plan geometry may be def'med in terms of the 
length-to-width or 'aspect' ratio, L/B, or the internal- 
to-external radii ratio, Ri/R , respectively 

(d) the frequency factor ao = coB/Vs, where V s is a 
characteristic shear wave velocity of the soil deposit 

(e) the ratio G~/G2 of the shear moduli corresponding 
to the upper soil layer and the underlying halfspace, 
respectively; this ratio may attain values ranging 
from 0, in case of a uniform stratum on rigid base, 
to 1, in case of  a uniform halfspace 

(f) the Poisson's ratio(s) v of the soil layer(s) 
(g) the hysteretic critical damping ratio(s) ~ of the soil 

layer(s) 
(h) the factors n and r~ which express the 'degree' of 

anisotropy and the 'rate '  of inhomogeneity, respec- 
tively; n = EH/Ev, where EH and E V are the hori- 
zontal and vertical Young's moduli of a cross- 
anisotropic soil; while ~ ,  for a certain type of 
inhomogeneity, describes the change of shear 
modulus from the surface to a depth equal to B 

(i) the relative flexural rigidity factor R F  = (EflEs) 
(1--9}).  (t/B) 3 where El, vy and t are, respectively, 
the Young's modulus, Poisson's ratio and thickness 
of  the foundation raft; R F  ranges from ~,  for a 
perfectly rigid foundation, to 0, for an ideally 
flexible mat. 

R I G I D  S U R F A C E  F O U N D A T I O N S  O N  H O M O G E N E O U S  
H A L F S P A C E  

Rigid c~cular foundation 

When dealing with a deep and relatively uniform soil 
deposit, it makes engineering sense to model it as a homo- 
geneous halfspace. This idealization, primarily because of 
its simplicity, has been widely employed to determine 
stresses and deformations in soils, and its use in soil 
dynamics has led to results in qualitative agreement with 
observations. From a practical point of view, perhaps the 
greatest value of the model has been in explaining impor- 
tant features associated with foundation vibrations. 

The dynamic impedance functions for a rigid cir- 
cular foundation on the surface of a homogeneous half- 
space have been tabulated by Veletsos et al. 2a and Luco 
et al.; 27'2a'62 Fig. 5 presents their results in the form of 
equation (17), with zero hysteretic damping ratio. (Obvi- 
ously, in this case, k = k and c = c.) The values of  k and c 
corresponding to non-zero values of internal damping are, 
for all practical purposes, very similar to those plotted in 
Fig. 5, in accord with the correspondence principle. Refer- 
ence is made to Veletsos e t  al . ,  29 t u c o  66 and Lysmer 63 for 
a more detailed discussion on this subject. Notice that only 
the diagonal elements of the impedance matrix are s h o w n  
in the figure, as the cross swaying-rocking impedance is 
essentially zero. 

It is evident from Fig. 5 that the normalized impedances 
Ka/GR and Kb/GR 3, where a refers to the translational 
modes v and h and b to the rotational modes r and t, 
depend only on the Poisson's ratio v of the halfspace and 
the frequency factor ao. The following trends are worthy 
of note in Fig. 5. 

1. The vertical and rocking stiffness, K, and dynamic 
stiffness coefficients, k, are the most sensitive to variations 
in Poisson's ratio. On the other hand, the horizontal imped- 
ance function has a small dependence on v, while the 

torsional response is totally independent of v at all fre- 
quencies. It thus appears that the importance of Poisson's 
ratio increases when the relative contribution of generated 
dilational (P) waves increases. Indeed, in the vertical and 
rocking modes P waves are significant; in the horizontal 
mode P waves are of  secondary importance; and in the 
torsional mode only SH waves are generated and P waves 
play no role in the response. 

2. The coefficients kh, Ch and c v are essentially inde- 
pendent of frequency and can be considered constant 
without any appreciable error. On the other hand, kv, kr, 
c r and c t exhibit a strong sensitivity to variations in the 
frequency parameter, while k t shows an intermediate 
behavior. Of particular interest is the rapid decrease of the 
vertical and rocking stiffness coefficients ke and k r with 
increasing a0, for values of Poisson's ratio close to 0.5* 
(typical for saturated clays). In fact, k¢ and k r become 
negative for values of ao greater than 2.5 and 5, respec- 
tively. Some years ago it appeared that use of  'added 
masses' could adequately account for the decrease with 
ao of the stiffness coefficients, in the range of low fre- 
quencies. Such 'masses' would in effect produce dynamic 
stiffness coefficients of the form k - - m ~  2 -  a reasonable 
approximation indeed for low frequencies, which formed 
the basis of the 'lumped-parameter' model, described in 
a preceding section of the paper. Unfortunately, as is 
evident from Fig. 5, this approximation may lead to sub- 
stantial errors for larger frequencies. Moreover, the concept 
of 'added mass' has all too often been confused with the 
physically incorrect notion of an 'in-phase soil mass', which 
at much earlier times had found considerable use in the 
design practice. 

3. While the damping coefficients of the translational 
modes, c~ and Ch, attain large and nearly constant values 
throughout the frequency range 0 <  ao ~< 8, the coefficients 
c r and c t of the two rotational modes are very sensitive to 
variations in frequency in the low range of ao, tending to 
zero as ao approaches zero. At larger frequencies (ao greater 
than about 3) c r and c t are essentially frequency-indepen- 
dent, but their values both equal to about 0.30, are 
significantly smaller than the corresponding values of 
c v ~ 0.95 and Ch ~--0.60. These differences imply that a 
smaller radiation of wave energy takes place during rocking 
and torsional than during vertical and horizontal oscilla- 
tions. It seems that the dynamic stress and strain fields 
induced in the soil by the two types of  rotational loadings 
are of limited extent, with the generated waves decaying 
very rapidly away from the loading area due to 'construc- 
tive interference'. These phenomena will become more 
evident in connection with the behavior of footings on 
layered or inhomogeneous soil deposits. 

In any case, the practical implication of the existence of 
only a small amount of  radiation damping in the rocking 
and torsional modes of oscillation is that a realistic estimate 
of the response may be obtained by incorporating the 
effects of  material (hysteretic) damping in the soil. On the 
contrary, material damping is insignificant for horizontal 
and, especially, vertical oscillations and, with little loss in 
accuracy, it may be neglected in the presence of the much 
higher radiation damping. 

* It is noted that although for saturated soft clays under static un- 
drained loading one should use v = 0.50, with dynamic loading 
v = 0.50 leads to infinite dilatational wave velocity, which is not 
observed in the laboratory; instead the Biot-Ishihara theory for 
poroelastic media yields a maximum value of ~ slightly less than 
0.50. 
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Clearly, soil deposits having a constant G and extending 
to practically infinite depths, as the homogeneous halfspace 
model assumes, do not abound in nature. In addition, 
circular foundations are rather rarely constructed. Nonethe- 
less, the results of Fig. 5 for a circular foundation on a half- 
space are of great value in understanding the phenomena 
associated with foundation vibrations. From a practical 
point of view, however, the shape and trends of these 
impedance functions are more important than their exact 
values. 

Rigid strip foundation 
When dealing with long and narrow foundations, the 

length of which is larger than their width by a factor of 5 
or greater, it is a common practice to idealize their shape as 
an infinitely long strip. If, moreover, the dynamic loading 

is reasonably uniform along the longitudinal direction, 
plane.strain conditions prevail throughout and 2D analyses 
are sufficient to obtain the response. 

Figure 6 displays the dynamic impedance of a rigid strip 
foundation on the surface of a homogeneous halfspace. 
These results were obtained by the semi-analytical pro- 
cedure of  Gazetas 36 and Gazetas and Roesset 38 and are in 
agreement with the results of Karasudhi et al. 26 It is noted 
that in this case the impedance functions are presented in 
the form described by equation (4), and not in one of the 
most usual forms of equations (12) or (17). The necessity 
for this change stemmed from the fact that the static ver- 
tical and horizontal stiffnesses of an infinite strip on a 
halfspace are zero, in agreement with the classical theory of 
elasticity. This is at variance with the behavior of circular 
foundations, whose (nonzero) static stiffnesses can be 
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found from the expressions included in Fig. 5. The infinite 
displacement of a strip-loaded halfspaee arise from the large 
depths of the corresponding 'zones of influence'. In other 
words, the static stresses induced by the strip surface loads 
decay slowly with depth and, thus, cause appreciable 
straining of even remote soft elements; accumulation of 
these strains yields infinite displacements. 

On the other hand, the stress and strain fields induced 
by moment loading are confined to the near surface soil 
only; thereby producing small surface displacements and 
non-zero static stiffnesses. For a rigid strip foundation, an 
expression for the static rocking stiffness is included in 
Fig. 6. 

A few other trends are worthy of note in Fig. 6. First, 
one should notice that there are only three possible modes 
of  vibration of a strip (vertical, horizontal and rocking) as 
compared to the four modes of a circular footing. Appar- 
ently, torsional oscillations involve out-of-plane motions 
and hence are impossible with strip footings. 

In general, the dependence of the dynamic impedances 
on the Poisson's ratio of soil is very similar for strip and 
circular foundations. Thus, the discussion of  the preceding 
section on the sensitivity of circular impedance functions 
to v, is also applicable to the present case. 

Regarding the variation of impedances with frequency, 
on the other hand, there are some differences between 
circular and strip footings, although clearly the general 
trends are similar. Thus, in the very low frequency range, 
the real parts Ktt  and Khl of the two translational modes 
increase with increasing ao and they attain peak values of 
ao ranging from about 0.25 to about 1.0, depending pri- 
marily on the Poisson's ratio and the type of oscillation. 
This implies that 'constructive interference' of various P 
and S waves originating at the soil-foundation interface 
reduces the depth of the 'zone of influence'; this results 
into finite displacements and non-zero dynamic stiffnesses. 

Beyond their peak values, Kvl and Khl behave much like 
their circular counterparts. Notice, however, that at 
Poisson's ratios close to 0.50 the vertical strip stiffness 
becomes negative at ao values greater than 1.3, as compared 
with the corresponding value of 2.5 which was observed 
for circular footings in Fig. 5. 

The imaginary parts K~2 and Kh2 of the vertical and 
horizontal modes increase almost linearly with ao, thus 
indicating qualitatively similar radiation damping character- 
istics of strip and circular foundations. (Notice that the 
damping coefficients c in the latter case are proportional 
to the slopes of the imaginary component of impedance- 
versus-ao curves; hence a constant c implies a linearly 
varying K2.) 

Finally, the rocking stiffness and damping terms of both 
strip and circular foundations exhibit essentially identical 
trends. Evidently, rocking induced static or dynamic 
stresses influence only the near-surface soil under both 
plane-strain and axisymmetric loading conditions. 

Rigid rectangular foundation 
Results are now available for the complete dynamic 

impedance matrix of rigid rectangular foundations with 
varying aspect ratios L/B, over the low and medium fre- 
quency range. 47 For the vertical, horizontal and rocking 
modes, in particular, results are available even for moder- 
ately high values ofao. ~,46,*a 

Again, in presenting the variation with frequency and 
aspect ratio of impedances it is convenient to express them 
in the form of equation (17), with a0 = coB/F, where 2B 

is the width of the smallest side of the foundation. Results 
for the static stiffnesses are presented first. 

It has been known for some time that the static stiffness 
of a typical rectangular foundation can be approximated 
with reasonable accuracy by the corresponding stiffness of 
"equivalent" circular foundations. For the translational 
modes in the three principal directions (x, y and z) the 
radius Ro of the 'equivalent' circular foundation is obtained 
by equating the areas of the contact surfaces; hence: 

(2B.2L)  '/2 
Ro = x rr / (47) 

For the rotational modes around the three principal axes, 
the 'equivalent' circular foundations have the same area 
moments of inertia around x, y arid "z, respectively, with 
those of the actual foundation. Thus, the equivalent radii 
a r e :  

Rox = (16L. Ba/31r) TM (48) 

for rocking around the x-axis; 

Roy = (16B.La/3rr) v4 (49) 

for rocking around the y-axis; and 

Roz = [16B'L (B2+L2)] d (50) 

for torsion around the z-axis. 
The results of recent parametric studies have confirmed 

the similar static behavior of rectangular and equivalent 
circular foundations. Table 2 is a synthesis of the results of 
several such investigations. It presents theoretically 'exact' 
formulae for all the translational and rotational static stiff- 
nesses of rigid rectangular foundations having a wide range 
of aspect ratios. These formulae are cast in the form: 

K = Ko(Ro).d(L/b) (51) 

in which: K = the actual static stiffness; Ko (R o) = the corre- 
sponding stiffness of the equivalent circular foundation, 
obtained from Fig. 5; Ro = the radius of the 'equivalent' 
circle; and J(L/B) = a 'correction' factor, function of the 
aspect ratio, LIB. If J(L/B) were equal to 1 for all aspect 
ratios, the static equivalence between the two types of 
footings would have been perfect. Conversely, the larger the 
difference is between J(L/B) and 1, the less accurate it 
would be the approximate a rectangular with a circular 
footing. 

It may first be noted that only small discrepancies exist 
in the values of the 'correction' functions computed from 
the results of several authors. These discrepancies are due 
to either the assumed soil.footing interface behavior 
('smooth' versus 'adhesive' contact), or the employed 
different numerical solution schemes. In practice, however, 
in view of the small magnitude of these differences, one 
may safely use for J(L/B) the average of the values pre- 
sented in Table 2, for each particular aspect ratio. 

The following conclusions are evident from this Table. 
1. Even for aspect ratios, L/B, as high as 8, the 'equi- 

valent' circular foundations yield stiffnesses which are 
within 30% of  the corresponding stiffness of the actual 
rectangular foundation. This is by no means a large error, 
in view, for example, of the uncertainty in estimating the 
soil modulus in practice. 

2. For aspect ratios, L[B, less than 4 the 'equivalent' 
stiffnesses are in very good agreement with the actual 
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Table 2. Static stiffnesses for rectangular rigid foundation 

1. Vertical s t i f f n e s s  

4GR o 
Kz =- Kv =--~-v--v " Jv(L/B) 

'Correction' factor Jv 

Gorbunov- Dominguez etal. (1978) 
L Posadov Baxkan  Savidis 

(1961) (1962) (1977) 'Adhesive' 'Smooth' 

1 1.023 0.953 0.944 1.052 1.081 
2 1.025 0.975 0.973 1.063 1.130 
4 1.108 1.077 1.072 1.107 1.196 
6 1.197 1.152 - - - 
8 1.266 1.196 1.200 - - 

10 1.313 1.250 - - - 
20 1.572 . . . .  

2 .  Horizontal stiffnesses 

8GR o 8GR o 
Kx = -2-~--v " Jx(L/B) Ky = "2-~--v " Jy(t/B) 

'Correction' factor Jx 'Correction' factor Jy 

Dominguez Dominguez 
L Barkan et al. Barkan et al. 

(1962) (1978) (1962) (1978) 

1 0.993 1.035 0.993 1.035 
2 0.983 1.044 1.008 1.105 
4 1.000 1.085 - 1.221 
6 1.055 - - - 

8 1 . 1 3 2  - - - 

1 0  1.191 - - - 

3. Rocking stiffnesses 

8GR~ " Jrx(L/B) Kry 8GR3°Y Jry(L/B ) 
Krx = 3(1 -- v-''~ - 3(1 -- v----) 

'Correction' factor Jrx 'Correction' factor Jry 

Gorbunov- Gorbunov- 
L Posadov Dominguez Posadov Dominguez 
"B etai. (1961) etal. (1978) etaL (1961) etal. (1978) 

1 0.991 0.965 0.991 0.965 
2 1.034 1.039 1.035 1.031 
4 1.0488 1.117 1.072 1.140 
8 1.178 - 1.226 - 

I0 1.281 - 1.319 - 

4 .  Torsional stiffness 

Krz -~ Kt = a ~ GRa°z "Jt(L/B) 

'Correction' factor Jt 
L 

Dominguez et al. (1978) Roesset et al. (1977) 

1 0.950 1.0332 
2 1.000 - 
3 1.016 - 
4 1.166 - 

ones. Typically, the error is within 10% and, hence, it is 
insignificant for all practical purposes. 

3. The greatest differences are observed between actual 
and 'equivalent' stiffnesses for torsion (Kt)  and for hori- 

zontal displacement in the y direction (Ky). For LIB = 4, 
the error in K t is about 17% and in Ky about 22%. It is 
worthy of  note that whereas for a circular foundation 
Kxo = Kyo = 8GRo/(2- -v ) ,  where Ro is given by equation 
(47), a rectangular foundation with the larger side 2L 
normal to they-axis (Fig. 4) is characterized by: 

(L0 Ky ~ , r  x + ½GB B -- (52) 

for typical values of  Poisson's ratio. 

Variation with ao. Figure 7 portrays the dependence of  
the dynamic stiffness and damping coefficients, k and c, on 
the frequency factor ao and the aspect ratio LIB. These 
results were obtained with the Boundary Element Method 
by Dominguez and Roesset, 47 for a single value of  Poisson's 
ratio, v = 13. Only the coefficients of  the six diagonal 
components o f  the impedance matrix are shown, they 
correspond to the translational modes of  vibration (x, y 
and z) along each of  the three principal axes, and to the 
rotational modes (r x, ry and rz) around each of  the same 
three principal axes. The two cross.swaying-rocking (coup- 
ling) impedances, corresponding to the Xry and yr  x modes, 
are neglig~ly small for surface foundations, and are thus 
omitted from this presentation. Also shown in Fig. 7 as 
circles are the predictions of  the 'equivalent' circular 
foundations, computed from Fig. 5 in conjunction with 
equations (47)-(50). One may notice the following trends 
in Fig. 7. 

1. The terms k x and c x of  the impedance against motion 
normal to the smaller side 2B are insensitive to variations in 
ao. Moreover, k x is essentially independent of  the aspect 
ratio, L/B, while c x increases almost in proportion to the 
square-root of  LIB. Recall that c x must be multiplied by 
ao = ~B[Vs to obtain the imaginary component of  the 
dynamic part of  the impedance (equations (12) or (17)), 
in which 2B is the width of  the smallest side of  the footing. 
On the other hand, the frequency factor ao0 of  the 'equi- 
valent' footing equals ~Ro/Vs, with: 

2 / L ~  1/2 
Ro : - ~ n  B ~ B  ) (47a) 

i.e. aoo is proportional to the square-root of  LIB. Hence, 
plotted in Fig. 7, both stiffness and damping coefficients 
o f  the 'equivalent' footing are in excellent agreement with 
the corresponding coefficients of  the actual rectangular 
footing, for all aspect ratios studied (L/B = 1--4),  at least 
in the frequency range, 0 < ao ~< 1.5. 

2. The variation of  the vertical stiffness and damping 
coefficients, kv and Co, has a similar shape with the varia- 
tion of  k x and c x. In this case, however, the two coeffi- 
cients are more sensitive to variations in ao and LIB and 
the damping term cv is always larger than c x. Moreover, the 
agreement between actual and 'equivalent' coefficients is 
reasonably good, for all practical purposes. 

3. The coefficients ky and Cy, for a motion parallel to 
the maaller side 2B, show a greater sensitivity to both a0 
and LIB. Furthermore, the discrepancies between 'equi- 
valent' and actual values for these coefficients are appreci- 
able, increasing with the aspect ratio. In fact, footings 
with a large LIB ratio (e.g. >/4) tend to behave more like 
strip rather than circular footings, as a comparison between 
Figs. 5, 6 and 7 indicates. 

4. The stiffness coefficient krx for rocking around the 
longest axis, x,  exhibits no sensitivity to the aspect ratio, 
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L/B; moreover, its variation as a function of ao is nearly 
identical with the variation of the corresponding stiffness 
coefficient of both the 'equivalent' circular footing and a 
strip footing with the same width B (Fig. 6). The damping 
coefficient crx attains negligible values in the low frequency 
range and increases approximately in proportion to the 

fourth-root of LIB at high frequencies. Recalling that the 
frequency factor of the 'equivalent' circular footing is 
proportional to: 

R o x  - (37r)1/4 
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Figure 7 -  continued 
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whereas the term crx is multiplied simply by ao = ~B/Vs in 
equations (12) or (17), one can directly unveil the very 
close proximity between the actual and 'equivalent' damp- 
ing coefficients. 

5. The stiffness coefficients kr~ and k t for rocking 
around the shortest axis and torsion, respectively, show a 
somewhat similar dependence on LIB and exhibit some 
fluctuations with ao as L/B increases. The two coefficients 
are predicted only with small accuracy by the 'equivalent' 
circular footings. On the other hand, the two damping 
coefficients crr and ct grow rapidly with both frequency 
and aspect ratio. In this regard, it is interesting to notice 
that, for instance, the frequency factor for the ry mode is 
proportional to: 

2 (Lt3/" 
Roy - (3n)~/------ q B \ ~ i  (49a) 

which reveals a much stronger increase of Cry with LIB, as 
compared with the corresponding increase of crx (a power 
of  ~ for Cry versus a 4 for crx ). Again, the values of the two 
coefficients may be reasonably well predicted by the 
'equivalent' circular foundation. 

In conclusion, with the help of the formulae of Table 2 
and the graphs of Fig. 7, the dynamic behavior of rect- 
angular foundations with essentially any aspect ratio can be 
obtained. Furthermore, the 'equivalent' circular footings 
described through equations (47)-(50), yield reasonably 
good estimates of the response for values of LIB less than 
about 4 and frequency factors at least up to 1.5. For larger 
values of LIB, the static stiffnesses of Table 2 can be 
utilized in conjunction with the dynamic coefficients of 
an equal-width strip foundation (Fig. 6). More parametric 
studies are, however, necessary to obtain results in the high 
frequency range (1.5 <ao  < 8). 

RIGID SURFACE FOUNDATIONS ON A 
HOMOGENEOUS SOIL STRATUM 

Natural soil deposits very rarely have uniform properties 
within large depths from the loaded surface. More typical 
is the presence of a stiffer material or even bedrock at a 
relatively shallow depth. The response of a foundation on 
a soil stratum underlain by such a stiffer medium can be 
substantially different from the response of an identical 
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foundation resting on a uniform halfspace. It is, thus, 
imperative to study the dynamics of massless foundations 
on such soil deposits. Specifically two types of idealized 
soil profiles are considered in this section: 

(a) a homogeneous soil stratum over a rigid base, and 
(b) a homogeneous soft stratum over a homogeneous 

half space. 

Results for non-homogeneous soft strata, with moduli 
continuously increasing or decreasing with depth, will be 
presented in a subsequent section of the paper. 

In addition to the four dimensionless parameters which 
control the behavior of rigid footings on a halfspace, 
namely, ao, v, ~ and L/B, the ratio H/B (or H/R) is of 
crucial importance in the response of footings on a homo- 
geneous stratum. Its effect is, thus, studied throughout this 
section. Furthermore, the moduli ratio GI/G2 is of interest 
whenever the soft stratum is underlain by a non-rigid base 
(half space). 

Orcular foundation on stratum over a rigid base 
Results for the dynamic impedance functions of a rigid 

circular disk at the surface of a stratum-on-rigid-base are 
presented in Table 3 and in Figs. 8 and 9. Specifically, 
Table 3 offers simple and quite accurate formulae for the 
determination of the static stiffnesses; Fig. 8 studies the 
effect of the H[B ratio on the dynamic stiffness and damp- 
ing coefficients, k and e, for a single value of hysteretic 
damping ratio, ~ = 0.05; and Fig. 9 shows the sensitivity 
of k and c to variations in ~, for a single value of the 
ratio, H / B = 2 .  These results have been derived by 
Kausel aa and Kausel et al. ag' 9o and have been discussed by 
Roesset.60, 9~ Several significant conclusions may be drawn 
from this data. 

Static stiffnesses. It is evident from the formulae of 
Table 3 that the existence of rigid bedrock at a relatively 
shallow depth may drastically increase the static stiffnesses 
of a rigid surface foundation. The four expressions reduce 
to the corresponding halfspace stiffnesses when H/R tends 
to infinity, but their values increase with decreasing H/R. 

Vertical stiffnesses are particularly sensitive to variations 
in the depth to bedrock (notice the 1.28 factor). Hori- 
zontal stiffnesses are also appreciably affected by H]R 
(factor of 0.5) while the rotational stiffnesses (rocking 
and torsion) are the least affected. In fact, for H/R > 1.5 
the response to torsional loads is practically independent 
of  the layer thickness. 

An indication of the causes of this different behavior of 
a circular footing to the four different types of loading can 
be obtained by observing the depths of the 'zone of influ- 
ence' (known as 'pressure bulb' ever since Terzaghi) in each 
case. Thus, from Gerrand and Harrison, 92 in a homogeneous 
halfspaee, the vertical normal stress, o z, along the centerline 
of a vertically loaded rigid circular disk becomes less than 
10% of the average applied pressure at depths greater than 
zv-~ 4R; the horizontal shear stress, rzr, becomes less than 
10% of the average applied shear traction at depth greater 
than z h ~ 2R. From Gazetas, 9a the horizontal shear stresses 
rzO and rr0 due to linearly distributed torsional surface 
stresses become less than 10% of the maximum applied 
shear traction at z > z  t =~ 0.75R. Finally, moment loading 
with a linear distribution of  normal tractions varying from 
0 to p yields z r -  1.25R, below which oz is less than 
O.lOp. 

Variation with ao, H/R and ~. The variation of the 
dynamic stiffness and damping coefficients with frequency 
reveals an equally strong dependence on H/B. On a stratum, 
both k and c are not as smooth functions as on a halfspace, 
but exh~it undulations (peaks and valleys) associated with 
the natural frequencies (in shear and dilation) of the soil 
layer. In other words, the observed fluctuations are the 
outcome of  resonance phenomena: waves emanating from 
the oscillating foundation reflect at the soft-bedrock inter- 
face and return back to their source at the surface. As a 
result, the amplitude of foundation motion may signi- 
ficantly increase at specific frequencies of vibration, which, 
as shown subsequently, are close to the natural frequencies 
of  the deposit. Thus, the stiffness coefficients exhibit 
valleys which are very steep when the hysteretic damping in 
the soft is small (in fact, in certain cases, k would be exactly 
zero if the soil were ideally elastic); on the other hand, with 
large amounts of hysteretic damping (~ = 0.10--0.20) the 
valleys become less pronounced (Fig. 9). They also become 
less pronounced as the relative thickness of the layer, H]R, 
increases (Fig. 8).  

Another important phenomenon is revealed through the 
variation with ao of the damping coefficients. At low fie- 
quencies, below the first resonant frequency, radiation 
damping is zero. This is due to the fact that no surface 
waves can be physically created in a soil stratum at such 
frequencies and, since the bedrock prevents waves from 
propagating downward, geometrical spreading of wave 
energy is negligible. The small values of the damping in this 
range (Fig. 9) just reflect the energy loss through hysteretic 
damping; for a purely elastic soft c would be zero. 

Table 3. Static sn'ffnesses of rigid circular foundation on a stratum-over-rigid-base* 

Type of loading Static stiffness Range of validity~ Soil profile 

4oRI 
Vertical: K v =-~_v[1 + 1.28 H/R > 2 

tl 1R ) 
Horizontal: Kh = 2-~--v~ +2--H HIR > 1 

8GR'( IR) 
Rocking: Kr = 3(l--v) 1 +~'-~ 4 ~H/R > 1 

Torsion: Kt = 16 GR 3 H/R > 1.25 

R 

I [ 1 1 1 1 1 1  I I I l l  I l l l l l l l l  

. ?  ' . ' . ' . 

H." G,v " 

/I// ) / / / / i f  /J// / / / / / / /  ) 

* Adapted from KauseP and Kausel et al. "° 
~f For H/R < 2 or 1 these expressions would still provide reasonable estimates of  the actual static stiffnesses 
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The phenomena described in the two preceding para- 
graphs are observed to a larger or lesser degree in all four 
modes of vibration. However, there exist marked differ- 
ences among the dynamic coefficients of vertical, swaying, 
rocking and torsional oscillations. Specifically: 

1. For rocking and torsion, k and c are relatively smooth 
functions of ao, rapidly approaching the corresponding half- 

space curves as the layer thickness increases beyond 3R. 
Thus, H[R exerts only a small influence on the variation of 
these two coefficients. On the other hand, for vertical and 
horizontal translation, k and c display some very pro- 
nounced fluctuations with ao. Both the location and the 
shape of the resonant valleys are quite sensitive to varia- 
tions in H/R, and only for H/R values larger than 8 do 
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k(ao) and C(ao) approach the corresponding halfspace 
curves, ff ~ = 0.05. These results are consistent with the 
conclusions derived previously regarding the depth of the 
'pressure bulb' or 'influence zone' of a statically loaded 
foundation. Under dynamic loads, 'constructive interfer- 
ence' of downward propagating waves leads to a shallow 
dynamic 'pressure bulb' in both rocking and torsion. 

2. The resonant frequencies of horizontal (swaying) 
oscillations are in remarkable agreement with the natural 

frequencies of the stratum. As an example, the funda- 
mental frequency of the stratum in vertical shear waves, 
fs, 1, equals Va/4H and, thus: 

~rR 
aos, l 2 H (53) 

which is equal to n/4, for H/R = 2. As seen in Fig. 9, 
this value of ao essentially coincides with the first resonant 
frequency in swaying. It is not difficult to explain how the 
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simple one-dimensional wave propagation theory can so 
successfully predict the first resonant frequency of a three- 
dimensional problem: at values of ao below resonance 
essentially only shear waves exist in the stratum, propa- 
gating vertically between foundation and bedrock. There- 
fore, when this first resonance occurs we have a none- 
dimensional 'standing' wave and, in addition, little damp- 
ing and thus high response. Of course, as it may be inferred 
from Figs. 8-9, the situation becomes a little more involved 
at higher resonant frequencies. Thus, the second 'reson- 
ance' occurs at about the fundamental natural frequency 
of the stratum in dilational waves, and the third 'resonance' 
at about the second natural frequency in shear waves. In 
both cases, however, some non-vertical waves also partici- 
pate in the motion, as evidenced by the existence of non- 
zero radiation damping. Due to multiple wave reflections, 
P, S and Rayleigh waves are also generated and, hence, the 
one-dimensional theory predicts with smaller accuracy the 
pertinent swaying resonant frequencies of the soft-founda- 
tion system. 

On the other hand, vertical and rocking foundation 
oscillations induce mainly P but also S waves in the stratum. 
The relative importance of each type of wave depends to 
some extent on the Poisson's ratio of the soil. Recall that 
the ratio between the two wave velocities and between the 
corresponding natural frequencies of the stratum is given by: 

W=fv, n = [ 2 ( 1 - v ) ]  v2 
Vs fs, n / 1----~-v J n = 1, 2, 3 . . . .  (54) 

which, for v = ] yields a ratio of 2. Figures 8-9 clearly 
show that the first resonant frequencies for both vertical 
and rocking oscillations are reasonably close to the funda- 
mental frequency of the stratum in vertical P-waves 
(aop, 1 = lr/2 for H/R = 2). Higher resonances, however, can 
hardly be predicted by the simple one-dimensional wave 
propagation theory since, apparently, they involve a mix- 
ture of  P., S- and Rayleigh (R) waves. 

Referring to Fig. 9, it is observed that k and e are quite 
sensitive to variations in material damping, especially at 
frequencies near resonance. This is contrary to the so-called 
'correspondence principle' which assumes that the imped- 
ances derived for an undamped but otherwise identical 
medium by a simple multiplication with the factor 
1+2i~.  Remember, however, that this 'principle' works 
reasonably well for a homogeneous halfspace. 

The effect of Poisson's ratio is not studied in detail 
herein and reference is made to Kausel et al. s9 for a 
rigorous assessment of  its importance in swaying and 
rocking. Note, nonetheless, that the variation of the dyn- 
amic coefficients with frequency may be sensitive to 

this parameter, because of its influence on Vp and fv, n 
as previously explained (equation (54)). Thus, vertical and 
rocking coefficients are highly sensitive to v, especially 
with shallow layers; but swaying and torsional coefficients 
are practically independent of v. 

Strip foundation on stratum over a rigid base 

Table 4 and Figs. 10 and l l  present the results for 
vertical, horizontal and rocking oscillations of a massless 
rigid strip footing which rests on the surface of a homo- 
geneous soil layer overlying bedrock. These results were 
obtained with the formulation of Gazetas and Roesset 3s' 39 
and are in excellent agreement with the results of  Chang- 
Liang. s7 Additional numerical studies can be found in 
Jakub et al. s6, 6s and Gazetas. s4 

Static behavior. Simple expressions of  sufficient accuracy 
for practical purposes have been derived for the three static 
stiffnesses and these are listed in Table 4. Evidently, the 
presence of (infinitely rigid) bedrock at shallow relative 
depths has a dramatic effect on the static behavior of strip 
foundations. Vertical and horizontal stiffnesses, being no 
longer zero as in the case of a halfspace, are strongly in- 
creasing functions of B/H. Rocking stiffness also increases 
with B/H. Two noteworthy conclusions may be drawn by 
contrasting the expressions of Table 4 to those of Table 3: 

1. The effect of Poisson's ratio on the static stiffnesses 
is the same for both strip and circular rigid foundations. 
The effect is greatest for vertical and rocking loading 
[factor ( l - -v ) ]  and smallest for horizontal loading [factor 
(2--v)].  

2. Layer depth is substantially more important for strip 
than for circular foundations, especially with the two trans- 
lational modes (factors of 3.5 and 2 in the vertical and 
rocking expressions for a strip, as compared with 1.28 and 
0.5 in the corresponding expressions for a circle). This is a 
natural consequence of the much deeper 'pressure bulb' in 
a continuum subjected to plane-strain rather than axi- 
symmetric surface loading, as it has already been illustrated 
in preceding sections. 

3. Vertical stiffness is far more sensitive to variations in 
B[H (factor of 3.5) than horizontal and rocking stiffnesses 
are (factors of 2 and 0.20, respectively). The explanation 
lies again in the much greater 'depth of influence' of the 
vertical loads. On the other hand, moment loading induces 
stresses which decay very rapidly with depth; because on 
any horizontal plane, small normal stresses at large 
distances from the centerline contribute much to equi- 
librating the applied moment. Thus, rocking stiffnesses 
exhibit about the same small sensitivity to layer depth for 

Table 4. Static stiffnesses of  rigid strip foundation on a stratum-over-rigid.base 

Static stiffness 
Type of loading (per unit length) Range of validity* Soft prof'fle 

1.23% +35B) Vertical: Kv = 1--v ~ . -~ 1< H/B <10 

Horizontal: Kh = ~'-~__v[1 + H I < H [ B < 8  H,.,.:..:ZB,:.:..: 
rrGB a I 1 B ) 

Rocking: K r = ~ ) [ 1  +~'-ff 1 < H/B < 3 

* Outside this range the proposed expressions would still provide re~aonable estimates of the actual static stiffnesses 
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both strip and circular footings (factors oi ~' 1/5 and 1/6, 
respectively). 

Dynam/c behavior. Figures 10 and 11 portray the varia- 
tion with frequency of  the dimensionless compliance func- 
tions GF,,, where a = v or h, and GB2Fr. Specifically, Fig. 
10 intends to show the effect of H/B, and Fig. I f  the effect 
of ~. The results of Fig. 10 were obtained for u = 0.49 and 

= 0.05, with four different values of H/B, i.e. 1, 3, 8 and 
~; the last value corresponds to the homogeneous halfspace 
and is included for a comparison. Figure 11 shows the 
effect of u on vertical and rocking compliances only, for a 
layer with H/B = 2 and a homogeneous haifspace; the 
effect of v on swaying, being of secondary importance, is 
not studied herein. 

The same general trends observed in the dynamic 
behavior of circular foundations can now be seen in the 

response of strip footings, although some differences are 
also obvious. 

One f'wst notices in Figs. 10-11 that due to the presence 
of bedrock both the in-phase (real) and the 90°.out-of- 
phase (imaginary) components of displacement (com- 
pliance) are not smooth and monotonically decreasing 
functions of  frequency, as on a halfspace. Instead, they 
extu~oit peaks and valleys at frequencies related to the 
natural frequencies of  the stratum. Note that, in general, 
the peaks of a compliance function correspond to valleys 
in the impedance function. 

The major differences between strip and circular founda- 
tions stem from the much greater sensitivity of the vertical 
and swaying oscillation of a strip to variations in H/B. 
Even for H/B = 8, relatively high amplitude peaks are 
observed in the two compliance functions of the strip, 
for the case ~ = 0.05; their difference from the halfspace 
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compliances is substantial. On the other hand, rocking 
vibrations of a strip exhibit very similar trends with rocking 
of a circular plate; beyond H/R = 3 the presence of bed- 
rock is hardly noticeable. 

In the case of  vertical loading, the resonant peaks are not 
as sharp as those of the horizontal displacements. In fact, 
on very shallow deposits (H/B = 1) only a single flat reson- 
ance takes place, which is characteristic of a highly damped 
system. A possible explanation of such a behavior has been 
suggested by Gazetas and Roesseta9: at frequencies below 
the first resonance some 'leakage' of energy occurs in the 
form of laterally propagating P-, S- and R-waves. Evidence 
in favor in this explanation comes from the fact that the 
first resonant frequency, aor, lies in between the funda- 
mental natural frequencies of  the stratum in vertical S- 
waves, aos, 1, and in vertical P-waves, aop, 1. For example, 
Fig. 11 shows that, for H/B = 2 and v = 0.40, aor-- 1.30 
compared to aos, i = 0.785 and aop, ~ = 1.90. Recall that 
for the circular foundation aor was much closer to aop, 1. 

No extensive numerical results for rigid rectangular 
foundations supported by a soil stratum have been found 
in the literature. 

Foundation on stratum over a halfspace 
The homogeneous halfspace and the stratum-over-rigid- 

base are two idealizations of  extreme soil profiles. A more 
general soil model, the stratum-over-halfspace, is studied in 
this subsection. Besides the H/R or H/B ratio, the moduli 
ratio G~/G2 is needed to describe such a soil model. When 
G]/G2 tends to O, the stratum-on-rigid base is recovered; 
when it becomes equal to 1, the model reduces to a homo- 
geneous halfspace. Thus, the results presented in this 
section help in bridging the gap between 'halfspace' and 
'stratum' solutions to which we have restricted our atten- 
tion until now (Figs. 5-11). 

Numerical solutions for a uniform layer over a halfspace 
have been published by Hadjian and Luco 37 who studied 
the dynamic of circular foundations, and by Gazetas and 
Roesset3a, 39 who studied the response of strip footings. 

Based on the results provided by Hadjian and Luco, 37 
the author has derived simple but reasonably accurate 
formulae for the static stiffnesses of  a rigid circular disk, in 
terms of H/R and G1/G:. Table 5 displays these formulae, 
which are valid for the usual case in which GI < G2, i.e. 
a halfspace stiffer than the layer. At the lower limit, 
G1/G2-~O, these expressions reduce to those of  Table 3 
for a layer-on-rigid-base; at the upper limit, GI/G2 = 1, 
the halfspace expressions of Fig. 5 are recovered. At inter- 
mediate values, as the rigidity of  the supporting halfspace 
decreases, the static stiffnesses of  the foundation decrease, 
apparently due to increasing magnitude of strains in the 
halfspace. The results are intuitively obvious and need no 
further explanation. 

For circular footings, no results are presented here on 
dynamic stiffness and damping coefficients, but reference 
is made to the original publication by Hadjian and Luco. a7 

The variation of the dynamic compliances of  a strip 
footing with ao and GI/G: is portrayed in Fig. 12 for a 
layer with H = 2B, v = 0.40 and ~ = 0.05. Shallower as 
well as deeper layers have been examined by Gazetas and 
Roesset. 3s, a9 

An inspection of Fig. 12 indicates that the effects o f  
layering increase with increasing contrast between G 1 and 
G2; these effects are extreme for a layer on rigid bedrock 
(GI/G2 = 0) and, naturally, disappear in the case of  a 
homogeneous halfspace (G~/G2 = 1). There are two main 
effects of  increasing the softness of the halfspace. First, 
even for small positive values of GI/G2, i.e. as long as we 
do not deal with an infinitely rigid bedrock, the static 
translational displacement tends to infinity, although at a 
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Table 5. 

Type of loading 
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Static stiffnesses of circular foundations on a stratum-over-halfspace* 

Static stiffness* Range of validity Profile 

Vertical: 

Horizontal: 

Rocking: 

R R 
1 + 1.28 - -  ~ 

H 4G~R H 1 ~-- <5 iiil[lllllllllllll 
R 1--vl 1 +1.28 RG__t 

G2 

1R 
I + - - -  

8GtR 2H 
2--u I 1 R G~ 

1 + - - - - -  
2H G2 

1R 
14---- 

8GIR 3 6H 
1RGI 3(1--vt)  1-+ . . . .  
6HG2 

H 
1 < ~ < 4  

H 
0.75 < - - < 2  

R 

H GI 

• . G2 

e,D 

0 ~ '~a~ 1 

* Derived by the author on the basis of results provided by Hadjian and Luco 37 

much slower rate compared to the halfspace displacements. 
Thus, in the very low frequency range the in-phase (real) 
components of the displacements (compliances) are larger 
than in the case of rigid bedrock. 

On the other hand, at any specific frequency, the radia- 
tion damping of the system increases due to partial trans- 
mission of body-waves in the halfspace and the existence 
of surface waves at all frequencies. Consequently, the 
resulting variation of displacements with ao is smoother 
than in the rigid rock case. 

The effects of decreasing stiffness and increasing radia- 
tion damping are of major importance at frequencies equal 
to or lower than the first resonant frequencies of the 
system. With GI/G2 ascending from 0 (rigid bedrock) 
towards 1 (homogeneous halfspace), the aforementioned 
resonant peaks become shorter and flatter and the corre- 
sponding resonant frequencies shift to lower values. 

Higher resonant peaks also decrease substantially and 
may in some cases be completely suppressed. An example: 
the third resonant peak in swaying (which, we recall, occurs 
at the second natural frequency of the stratum in S-waves) 
disappears as soon as GI/G2 exceeds 0.10. 

Finally, it is hardly surprising that the vertical dynamic 
compliances are most sensitive to variations in G~/G2, 
while rocking compliances are least sensitive. The concept 
of a 'dynamic pressure bulb' proves again very convenient 
in explaining these differences. The depth of the 'bulb' 
attains relatively large values in case of vertical vibrations, 
somewhat smaller values for swaying and very small values 
for rocking. 

SOME R E S U L T S  F O R  RIGID S U R F A C E  
F O U N D A T I O N S  OF 'ARBITRARY" SHAPE 

Only a few numerical results are available for foundations 
having 'arbitrary' geometries, i.e. plan shapes other than 
strip, circular or rectangular. One reason for the lack of 
interest is that foundations of such 'arbitrary' shape are not 
constructed very frequently• Moreover, substantial com- 
putational effort must be expended to obtain dynamic 
solutions for such foundation geometries. The following 
presentation is divided into two parts: one dealing with 
vertically loaded footings of various 'solid' shapes and one 
with the complete response of annular footings. 

Vertically loaded foundations o f  various 'solid' shapes 
Analytical expressions for the static stiffnesses of rigid 

foundations supported to an elastic halfspace and having 
several different shapes (but without internal holes) can be 
derived from the results of Borodachev 94 (see also Selva- 
durai9). It is convenient to cast these expressions into our 
familiar form: 

4GRo 
r v  = - - "  Jv (55) 

1--v 

in which: Ro = ~ is the radius of the 'equivalent' cir- 
cular foundation, A being the area of the soil-footing 
contact surface; Jv is a shape-depended correction factor, 
numerical values of which have been tabulated in Table 6 
for numerous plan shapes. 

Table 6 in conjunction with Table 2 (part 1) can be used 
for determining the vertical static stiffnesses of a variety of 
foundations with very good accuracy. Moreover, the follow- 
ing trends are worthy of note: 

1. The circular disk yields the smallest stiffness of all 
footings with a given contact area. 

2. Of all rigid footings with an n-sided polygon-shaped 
plan of  a given area, the regular n-sided polygon yields the 
smallest stiffness. 

3. The correction factor depends primarily on the 
'aspect' ratio of the foundation, being surprisingly insensi- 
tive to the details of each particular shape. By 'aspect' 
ratio we somewhat loosely mean the ratio between largest 
and smallest critical foundation dimensions. Thus, for 
example, a rhombus, a rectangle and an ellipse having the 
same aspect ratio, equal to 4, yield very similar correction 
factors of about 1.12. 

In conclusion it seems that, by means of equation (55) 
and Tables 2 and 6, very good estimates can be routinely 
made of the vertical static stiffnesses of arbitrary-shaped 
rigid foundations on homogeneous halfspace. 

No information is available regarding the variation with 
frequency of the dynamic stiffness coefficient kv. However, 
inspection of Figs. 5 and 7 reveals that the 'equivalent' 
circular footing can successfully predict the actual k v of 
rectangular footings with aspect ratios up to 4, at least in 
the low and medium frequency range (ao g 1.5). Hence, 
and in view of the observed insensitivity of the static stiff- 
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ness to the details of the foundation shape, it is proposed 
that the variation of kv with ao for an 'arbitrary'-shaped 
foundation be estimated from Fig. 5 using the 'equivalent' 
radius, Ro = x ~ .  

On the other hand, the damping coefficient c v is practic- 
ally independent of frequency, as it is evident from Figs. 5 
and 7. For an arbitrary-shaped foundation, moreover, 
Dobry et al. 9s have recently derived expressions for the 
(radiation) damping coefficients in vertical and swaying 
vibrations, based on simple but realistic physical approxi- 
mations. For the vertical damping coefficient of a surface 
foundation their expression reduces to: 

0.85 
cv = (56) Jv 

in which Jv = the shape correction factor to be read from 
Table 6 or Table 2. Consequently, the vertical dynamic 
impedance of an arbitrary-shaped rigid foundation on a 
homogeneous halfspace can be directly and reliably esti- 
mated using the provided information. 

For the other translational and rotational modes of 
vibration of arbitrary-shaped rigid foundations, much less 
information is presently available. The 'equivalent-circle' 
approximation appears to be a simple and reasonable choice. 

Rigid annular foundation on soil stratum 
It appears that the conclusions of the preceding sub- 

section cannot be extended to foundations containing 
internal holes, like annular and crossed-beam foundations. 
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Table 6. Values of shape-depended correction factor for vertical 
static stiffnesses* 

Shape of  founda t ion  plan Jv 

Circle 1.00 
Regular hexagon 1.01 
Semicircle 1.05 
Equilateral triangle 1.07 
Triangle with angles, 45 °, 45 °, 90* 1.10 
Triangle with angles, 30 °, 60 °, 90 ° 1.12 
Ellipse with a/b = 2~ 1.03 
Ellipse with a/b = 3 1.07 
Elfipse witha/b = 4 1.13 
Ellipse with alb = 6 1.21 
Rhombus with an angle of 60 ° 1.07 
Rhombus with an angle of 45 ° 1.14 
Rhombus with an angle of 30 ° 1.27 
Rectangle with LIB = 2 1.03 
Rectangle with LIB = 4 1.13 
Rectangle with LIB = 8 1.23 

* Based on Borodachev 94' 9 
a, b are the  major,  minor  axes o f  the  ellipse 

For example, the vertical static stiffness of such founda- 
tions does not increase in proportion to the square-root of  
the contact area, A, as equation (55) implies. In other 
words, the 'equivalent-circle' approximation is no longer 
valid. 

Results for the static displacements of  a rigid circular 
ring on a halfspace have been published: by Egorov 96 and 
Dhawan 97 for vertical loading; by Dhawan 98 for moment 
loading; and by Dhawan 99 for torsional loading. Wong and 
Luco °~ studied the dynamic vertical response of a rigid 
square foundation with a square internal hole. Recently, 
Tassoulas 8s presented a comprehensive parametric investi- 
gation of the dynamic behavior of  rigid circular-ring 
foundations on a homogeneous stratum.over-rigid-base. 
All modes of vibration were considered and the effect of  
the dimensionless parameters Ri/R, H/R and ao = wR/Vs 
was graphically illustrated. The following discussion is 
based primarily on the remits of  Tassoulas,~' although some 
results from Dhawan, 97-99 are also included for comparison. 

Figure 13 plots the variation of all static stiffnesses of  a 
circular ring versus Ri/R, where R i is the internal radius. As 
expected, all stiffnesses invariably decrease as the size of  
the hole increases, while the radius R remains constant. In 
the limit, when R i becomes equal to R, the stiffnesses 
vanish (concentrated ring load). However, the sensitivity of  
stiffnesses to increases in the Rt[R ratio is surprisingly 
small. Particularly insensitive are the rocking and torsional 
stiffnesses. For values of RffR up to 0.50, they are prac- 
tically equal to the corresponding stiffnesses of  the circular 
foundation with radius R; for Ri/R = 0.95, K t and K r are 
respectively equal to 86% and 83%, of the circular stiff- 
nesses in torsion and rocking (while the contact area has 
been reduced to only 10% of the original circle). The 
explanation is rather obvious: the large shear or  normal 
stresses which develop near the outside edge of the footing, 
i.e. at large distances from the center, contribute substan- 
tially to equilibrating the applied torsion or rocking 
moments. In other words, the central foundation 'core' 
is 'underutilized' and, hence, its 'removal'  is of little conse- 
quence. Notice also that the variation of K t and K r with 
Rs]R is independent of H/R - a result consistent with the 
shallow 'pressure bulb' of moment loading discussed in 
preceding sections (e.g. Table 3). 

The horizontal stiffness is only slightly more sensitive 
to Ri/R. In contrast, the vertical stiffness is relatively 

sensitive not only to R~/R but toH/R as well. An example: 
increasing Ri from 0 to 0.95R reduces K v to 70% of its 
original value for H[R = 2; for a halfspace the corre- 
sponding value is 77%. But, again, for values of Ri]R up to 
0.5, K v remains practically equal to its original value, 
4GR(1 + 1.28RIn)l(1--v). 

Figure 14 depicts the variation with ao of the dynamic 
stiffness and damping coefficients, k and c. Four values of  
Rs]R are considered, 0, 0.5, 0.8 and 0.90, with the first 
value corresponding to a solid circular foundation. It is 
clear that: (1) there is little change in k and c with RflR; 
(2) the effect of  Ri[R is largest for vertical vibrations; and 
(3) the differences in the four sets of curves occur in the 
high frequency range ( a o )  1.5). 
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THE INFLUENCE OF INHOMOGENEITY, ANISOTROPY 
AND NONLINEARITY OF SOIL 

The results presented so far have been based on the simpli- 
fying assumption that the soil can be modeled as a homo- 
geneous, isotropic and linearly visco-elastic s t ra tum or 
halfspace. However, real soil strata frequently increase in 
rigidity with depth as a reflection of the increase in over- 
burden pressure, while in some other cases weathered 
crusts, in which rigidity decreases with depth, overlay 
deposits of softer clay. Furthermore, laboratory tests show 
that soils deform differently in the vertical and horizontal 
directions - a manifestation of anisotropic fabric acquired 
during natural formation and subsequent loading. Finally, 
when subjected to large enough stresses, soils respond as 
nonlinear and inelastic materials. 

This section of the paper presents characteristic results 
and important conclusions from a number of recent studies 
aimed at assessing the influence of soil inhomogeneity, 
anisotropy and nonlinearity on the behavior of dynamically 
loaded surface foundations. 

Effect o f  soil inhomogeneity 
Existing dynamic finite-element formulations can easily, 

albeit approximately, simulate a continuous variation of soil 
properties, by dividing the deposit into a number of  homo- 
geneous layers of increasing or decreasing stiffness. Yet, 
such formulations have not been adequately exploited to 
parametrically study the dynamic behavior of  foundations. 
Thus, most of the available solutions have been derived 
using analytical and semi-analytical methods. 

Numerous studies have been published for the vertical 
static problem. Prominent among them is the work of 
Gibson and his co-workers; 13'1°°'1°I who studied the 
response to arbitrary surface loads of a halfspace or stratum 
whose moduli increase linearly with depth, i.e. in the form 
G = Go + ~(z /R) ,  where Go and r~ are the moduli at the 
surface and at a one-radius (or one-semiwidth) depth. These 
studies revealed that for an incompressible medium, i.e. 
with Poisson's ratio of 0.50, the stress distribution is hardly 
influenced by the degree of inhomogeneity; in the parti- 
cular case of zero surface modulus (Go = 0) this distribu- 
tion is identical with the distribution in a homogeneous 

halfspace, regardless of foundation geometry. The surface 
settlement, on the other hand, being quite sensitive to the 
assumed soil profile, becomes directly proportional to the 
applied normal pressure when Go = 0, independent of the 
size and shape of the loaded area and of the thickness, H, 
of the soil layer on a rigid but frictionless (smooth) base. 
Thus, such a soil behaves like a Winkler medium rather than 
a homogeneous halfspace, its spring constant being simply 
equal to 2~JR. Expressions for the vertical static stiffnesses 
of surface foundations of several shapes supported by such 
a soil deposit (frequently referred to as 'Gibson soil') are 
shown in Table 7. 

This behavior remains only qualitatively true when 
drained soil behavior is taking place (i.e. ~ < 0.50). Thus, 
with increasing degree of irthomogeneity (e.g. increasing 
r~) normal and shear stresses affect the soil at greater 
vertical and lesser horizontal distances, in agreement with 
intuition that expects stiffer material to attract larger 
stresses. On the other hand, surface displacements, being 
moderately sensitive to v, do tend to become propor- 
tional to the applied local pressures as m increases. It is, 
thus, generally concluded that an inhomogeneous deposit 
leads to more uniform distribution of stresses under rigid 
foundations than the simple elastic theory (homogeneous 
halfspace) predicts. 

This general behavior of vertically loaded surface founda- 
tions on an inhomogeneous soil deposit has been recently 
shown to be applicable to torsionally loaded circular 
footings. 9s 

The static and dynamic vertical, horizontal and rocking 
behavior of a rigid strip foundation supported by a half- 
space or a stratum whose wave velocities increase linearly 
with depth, has been studied by the author, sa Some results 
of that study are presented here for a halfspace consisting 
of soil with a constant mass density, a constant Poisson's 
ratio, v = 0.25, and a constant hysteretic damping, ~ = 0.05, 
and an S-wave velocity varying with depth according to: 

V s = V o  I + X  (57) 

in which: Vo = surface velocity; 2B = foundation width; 
and X = the dimensionless rate of inhomogeneity. 

Table 7. Static stiffnesses of rigid foundations on inhomogeneous and cross~nisotropic soils* 

Type of loading Static stiffness Range of validity Soil profile 

Vertical, on foundation of 
any shape 

Vertibal, on rigid strip 

Horizontal, on rigid strip 

r~ 
2 - -A 

B 

A = contact area 

 A(I, E:v.14_n , 
A = contact area 

45E V 

(I+ 3.5 H )I4--n](I/6)(H/B) 
5B 

1+ 
8 3H 
-~ Elf 4.10 - -n (H/B)  .... 

Undrained loading conditions 

H 
1 < 3 < 4  

0.5 <n <2.5 

H 
1 < - < 6  

B 
0.5 <n <2.5 

Cross-ardsotropic 'Gibson' 
half space obeying equation (60), 
with a modulus GVH = m (z/B) 

General cross-anisotropic 'Gibson' 
halfspaee (i.e. not obeying 
equation (60)) with a modulus 
C VH = '~ (z/B) 

Shallow cross-aulsotropie 
undrained layer; soft properties 
are uniform throughout the 
layer and they satisfy 
e q u a t i o n ~ ~  

n ~ .  ' . . . . , " . • 

* Based on results by Gibson ~ 3 and Gazetas 54 
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Figure 15 portrays the dependence of k of the normal- 
ized vertical, horizontal and rocking stiffnesses. As one 
might expect, the vertical stiffness exhibits the largest 
sensitivity to X and the rocking stiffness the smallest- 
another manifestation of the difference in the 'pressure 
bulbs' of the three types of loading. 

The effect of soil inhomogeneity on the three dynamic 
compliance functions is shown in Fig. 16. Two values of the 
parameter X are considered: 0 and 1.5. The former value 
corresponds to a homogeneous halfspace, the wave velocity 
of which, Veff, was selected to be the same with the wave 
velocity of the inhomogeneous halfspace at a depth equal 
to the foundation halfwidth, B; i.e.: 

Vetf = 1Io(1 + X) (58) 

The choice of such a homogeneous halfspace for the 
comparison has been motivated by the frequent use in 
practice of solutions developed for homogeneous soils, 
with an effective modulus equal to the actual modulus 
at a depth equal to B or R, to approximate the actual 
response. 

It is evident from the comparison of Fig. 16 that, in the 
low frequency range examined, the inhomogeneous 
medium yields vertical and horizontal displacements (both 
in-phase and 90°-out-of-phase components) which are, 
indeed, of about the same average level with those of the 
'equivalent' homogeneous halfspace. However, the rocking 
motions on the inhomogeneous deposit are seriously 
underpredicted by the chosen homogeneous halfspace 

i I x Vs ,~$0 
i r= 
i ..~nu~iva~equivalent ~ 4 | 

,,-B i- . . . .  T ~  - - - ° - "e°u '  

Z Z nonhomogeneoug ~ ~ 
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Figure 15. Static snffnesses of  a rigid strip foundation on 
an inhomogeneous halfspace (v = 0.25) s3 
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Figure 16. Compliance functions of  a rigid strip founda- 
tion on an inhomogeneous halfspace (v = 0.25, ~ = 0.05) 53 

model; to yield comparable rotation levels the two media 
must have the same moduli at a depth of about B/2, or 
somewhat less. 

Furthermore, a substantial difference between the 
'~ = 1.5' and 'X = 0' compliance functions may be noted. 
Namely, the former are not smoothly varying functions of 
ao, as are the latter, but exhibit peaks and valleys which are 
apparently the result of resonance phenomena. In the very 
low frequency range the imaginary components of the 
'X = 1.5' compliances attain quite small values, increasing 
almost linearly with ao. 

These phenomena are reminiscent of the dynamic 
behavior of foundations supported by a stratum-over-a- 
rigid-base (Figs. 10-11). In this case, total reflection of the 
downward propagating waves is possible due to the increas- 
ing soil velocity with depth. A discontinuity in velocity is 
not necessary for such a reflection, since the wave rays in 
inhomogeneous media with linear velocity profiles are not 
straight lines but circular arcs. As a result, however, the 
resonant peaks on inhomogeneous soils are very flat and 
the radiation damping is never zero. In contrast, the 
presence of stiff rock-like material at some depth beneath 
the surface leads to very sharp and pronounced displace- 
ment peaks, occurring at well separated frequencies (see 
Fig. 8-11). 

Deposits with a weathered crust. The dynamics of a rigid 
strip foundation on an idealized soil deposit consisting of 
a homogeneous stratum or halfspace overlain by a top 
stiffer layer in which the shear modulus decreases as a 
second-degree parabola (Fig. 17) has been recently studied 
by the author, ss Also recently, Rowe and Booker, 1°2 pre- 
sented comprehensive parametric results pertaining to 
vertical static uniform loading, both plane-strain and axi- 
symmetric, on several realistic inhomogeneous deposits, 
including a homogeneous layer with a weathered crust. 

Figure 17 ss illustrates the effect of the reduced crust 
thickness Dcr/B on the three normalized dynamic imped- 
ance functions of a rigid strip. The soft profiles are charac- 
terized by a shear modulus ratio, Gcr/G , equal to 4, and 
realistic values of the Poisson's ratios, Vcr and v, equal to 
0.25 and 0.45, respectively. Note that the ratios Ger/B and 
Dcr/B may be considered as indexes of the degree and 
depth of  weathering. 

It is evident that the presence of the crust has a pro- 
nounced effect on all impedances. Especially sensitive to 
changes in Dcr/B are the horizontal impedances, whereas 
the vertical and rocking ones are somewhat less affected. 
Variations in the assumed moduli ratio (not depicited in 
Fig. 17) have been shown to have a similar effect. 

Furthermore, the weathering effects exhibit a strong 
dependence on frequency. For example, at low frequency 
factors vertical impedances are relatively indifferent to 
variations (within realistic limits) in either stiffness or depth 
of the crust. This is understandable in view of the fact that 
vertical surface strip loading affects the soil at great depths, 
of the order of 8B, as discussed previously; thus, a stiff 
crest with Dcr ~ B can only be of secondary importance. 
This picture, however, changes at higher frequency factors, 
i.e. lower wavelength.thickness ratios, as may be seen in 
Fig. 17. Greater participation of surface (Rayleigh)waves 
in the motion and stronger reflection of the body waves 
emanating from the foundation by the soft layer interface, 
may be part of the explanation. 

It may also be noticed that rocking impedances show 
about the same sensitivity to weathering throughout the 
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Figure 17. Impedance functions o f  a rigid strip founda- 
tion on deep soil deposit with a weathered crust ( Gcr/G = 4, 
1¥r=0.25, V=0.45, ~=0.05) ss 

frequency range examined, and that, in general, the imagin. 
ary parts of all three impedance functions exhibit only a 
small dependence on either Dcr/B or Ger[G. 

Reference is made to the original publication by the 
author for a more complete parametric assessment of  the 
dynamic effects of 'weathering' on strip foundations. 
The author sees a definite need to extend these studies to 
dynamically loaded circular foundations. 

Effect o f  soil anisotropy 
Numerous experirnental studies have shown that most 

natural soils and rocks possess anisotropic deformational 
characteristics. ~a']°3-~°6 This anisotropy stems from the 
fact that soil fabric is intimately related to the mechanical 
processes occurring during formation, which involves aniso- 
tropic stress systems. Thus, for example, natural clay 
deposits formed by sedimentation and, subsequently, one- 
dimensional consolidation over long periods of time acquire 
a fabric that is characterized by particles or particle clusters 
oriented in a horizontal arrangement. This preferred orien- 

tation makes the clay a cross-anisotropic material with a 
vertical axis of  symmetry. Similarly, fabric anisotropy in 
sands arises from the influence of gravity forces and particle 
shape on the deposition process, while in rocks the aniso- 
tropy may result from the anisotropy of forming minerals 
and micro- or macro-fabric features. 

While an isotropic elastic material is characterized by 
only two independent elastic constants (e.g. shear modulus 
and Poisson's ratio), five parameters are needed to describe 
the stress-strain relationships of an elastic cross-anisotropic 
material: a Young's modulus E v  in the vertical direction; a 
Young's modulus EH in the horizontal direction (EH = 
nEv); a Poisson's ratio vVH for the effect of vertical on 
horizontal strain; a Poisson's ratio I~HH for the effect of 
horizontal on complementary horizontal strain; and a shear 
modulus GVH = GHV for distortion in any vertical plane, 
i.e. any plane parallel to the vertical axis of material sym- 
metry. Note that isotropic materials are just a particular 
class (subset) of  cross-anisotropic materials characterized 
by n = 1 (i.e. EH = E v  = E, v v n  = i)HH " ~  1) and GvH = G = 
E/2(1 + v)). 

The condition of incompressibility, appropriate for un- 
drained loading conditions, requires that: 

n 
VVH = 0.50, VHH = 1 - - - -  (59) 

2 

and, thus, reduces the number of independent material 
constants to three. Moreover, utilizing the results of  several 
experimental investigations, the author has recently shown s4 
that, in many clays, the shear modulus GVH is closely 
related to the other four material constants. Under un- 
drained conditions, for example, with a reasonable accuracy: 

E v  
GVH - (60) 

4 - -n  

Thus, the number of independent material constants 
reduces to two, under undrained conditions, and to four, 
under drained conditions. 

Results for statically loaded rigid foundations on cross- 
anisotropic soils have been presented by Gerrard and 
Harrison, 92,1°7 Gibson ~3 and Gazetas. s4 Solutions for 
dynamically loaded foundations on cross-anisotropic homo- 
geneous soil deposits whose elastic constants satisfy equa- 
tion (60) (or its 'drained' counterpart, not given here) have 
been presented by Kirkner 67 for circular foundations on 
halfspace and by the author s*, 1o8, ,09 for strip foundations 
on homogeneous stratum or on halfspace. Table 7 and 
Fig. 18 offer some characteristic results from the men- 
tioned publications. 

Specifically, Table 7 displays simple but fairly accurate 
formulae for the vertical static stiffness of arbitrary-shape 
foundations on a cross-anisotropic, incompressible and 
inhomogeneous halfspace ( 'Gibson' soil), and for the 
vertical and horizontal static stiffnesses on a homogeneous 
and incompressible cross-anisotropic shallow soil stratum- 
on-rigid base. Notice that on an anisotropic 'Gibson' half- 
space obeying equation (60), the degree of anisotropy has 
no influence on the vertical stiffness. In all other cases, 
however, the stiffnesses increase substantially with 
n = EH[Ev. In fact, for n -*4 all stiffnesses tend to infinity, 
since the strain energy of such a material is zero for all 
possible applied stress systems. TM to7 

Regarding the sensitivity of the dynamic response to 
variations in the degree of anisotropy, n, under undrained 
conditions, the main conclusions of the aforementioned 
studies are summarized as follows. 
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shear modulus and the increase in (effective) damping ratio 
with increasing amplitude of shear strain. 

Soil nonlinearities are not usually of a significant magni- 
tude in machine foundation problems, for the reasons 
mentioned in the introduction. (In contrast, the response 
of soil-foundation systems to strong earthquakes is very 
sensitive to deviations from linear-elastic soil behavior.) 
Nonetheless, even with small amplitudes of vibration, 
it is almost certain that some soil elements will undergo 
plastic deformations. For instance, under the edges of 
rocking shallow foundations, large concentration of stresses 
and low confining pressures will invariably lead to yielding 
of soil.* 

An interesting parametric investigation of the effects of 
soil nonlinearities on the dynamic impedance functions of a 
rigid strip foundation has been conducted by Jakub and 
Roesset. s6 In their studies the soil was modeled as a homo- 
geneous or inhomogeneous stratum-over-rigid.base with 
reduced thicknesses H/B = 1, 2 and 4. A Ramberg-Osgood 
model was used to simulate the nonlinear constitutive 
relation of soil and iterative linear analyses were performed. 
One of the two parameters of the Ramberg-Osgood model, 
r, was kept constant equal to 2, while the second one, a, 
was varied so as to cover a wide range of typical soil stress- 
strain relations. For such a model the variation of secant 
modulus and effective damping ratio with stress amplitude 
is given by: 

G 1 
- ( 6 1 )  

Go l + a(r/Go Ty) 

For the two compressional modes of vibration, i.e. 
vertical and rocking, the influence of anisotropy is appreci- 
able but seems to decrease as the thickness of the stratum- 
on-bedrock decreases, with the shear modulus Gvx  remain. 
hag constant. The effect of anisotropy on the shearing 
mode of vibration, i.e. swaying, is similar with the effect 
of anisotropy on Gv-/-/and independent of the layer thick- 
hess; in other words, two soils with identical GvH and H 
but with different Young's moduli and n, will yield very 
similar undrained dynamic displacements. 

Figure 18 portrays the dependence on n of the three 
compliance functions of frequency, for a layer with H = 3B 
and constant Er-. It is concluded that, in the low and 
medium frequency range, by increasing n the dynamic 
displacements decrease and the resonant frequencies shift 
to the right, roughly in proportion to (4- -n)  -'/2. Obviously, 
the corresponding decrease in the static stiffness may be 
held responsible for this effect. At certain higher frequencies, 
however, rocking and vertical displacements increase, 
instead of decreasing, with n. Nonetheless, the practical 
significance of such a reversal will probably be small, in 
view of the small displacement amplitudes at such fre- 
quencies. 

In conclusion, anisotropy exerts its main effect through 
the static stiffnesses of the soil-foundation system. 

and 

Effect o f  soil nonlinearity 
In current soil.structure interaction practice the non- 

linear plastic soil behavior is usually approximated through 
a series of iterative linear analyses, using soil properties 
(moduli and damping ratios) that are consistent with the 
level of shearing strains resulting from the previous anal- 
ysis.~,,10 These analyses may utilize a wealth of available 
experimental soil data relating the decrease in (secant) 

2 G r 
= (62) 

3n Go GoTy 

in which: Go = the initial shear modulus for low levels of 
strain; 7y = a characteristic shear strain, typically ranging 
from 0.0001% to 0.01%, and ¢ = the amplitude of the 
induced shear stress. 

From these studies Jakub and Roesset ~'6s concluded 
that a reasonable approximation to the swaying and rocking 
impedances of a rigid strip may be obtained from the avail. 
able linear visco-elastic solutions (e.g. Table 4 and Figs. 
10-11), provided that 'effective' values of G and ~ are 
estimated from equations (61)-(62) with: 

¢ = z e (63) 

where re is the statically induced shear stress at a depth 
equal to 0.50B, immediately below the foundation edge. 

While more studies would be necessary to improve the 
reliability of this simple rule, its use in machine foundation 
analyses can be safely recommended, in view of the small 
local nonlinearities that usually develop. 

RIGID EMBEDDED FOUNDATIONS 

The response of embedded foundations to static and 
dynamic loads has received considerable attention. As a 
result, several finite-element as well as approximate 
continuum-type formulations have been developed, while 
parametric studies have explored the relative significance 
of the depth and ' type'  of embedment. Reference is made 
to the work of Lysmer et al., s3 Novak et al., nl Beredugu 
* Evidence of such yielding has been presented by Richart et al. 7 
(Figs. 10 and 26), while recent experimental work at the Univerdty 
of Michigan revealed a similar phenomenon under torsionally excited 
footings.' 28 
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et al., 72 Waas et al., 31 Kausel et al., a9 Chang-Liang, s7 John- 
son et al., t*2 Luco, 66 Dominguez et al., 47 Harada et al. 76 
and Tassoulas, as among several others. 

Results have been presented for circular, strip and rect- 
angular foundations and a variety of idealized soil profiles, 
including tl,e halfspace, stratum-over-bedrock and stratum- 
over-halfspace. In each case, the new key dimensionless 
problem parameter, in addition to the parameters control- 
ling the response of surface foundations, is the relative 
embedment, D/B or D/R. Moreover, the assumed interface 
behavior at the contact between vertical sidewalls and 
backfill is of crucial importance. Most of the aforementioned 
studies assume that wails and soil remain in full contact 
during vibrations, as if they were welded at their interface. 
In reality, however, no tensile stresses can be sustained 
between the two media, while the magnitude of developing 
shear tractions cannot violate Coulomb's friction law. 
Hence, separation and sliding are likely to occur between 
sidewalls and backf'dl, depending primarily on the mode 
of vibration and the nature and method of placement of 
the soil. Field evidence, documented by Stokoe and 
Richart, 1t3 seems to indicate that separation and sliding are 
more likely with clayey than with sandy soils, in accord 
with intuition. Furthermore, it is expected that separation 
will be more significant with the two antisymmetric modes 
of vibration (swaying and rocking), whereas sliding will be 
of greater importance in the two symmetric modes (vertical 
and torsional). Ideally 'welded' foundations are studied 
first. 

' Welded' cylindrical foundations in a homogeneous stratum 

The results to be presented are based on the work of 
Kause133 and are strictly applicable to foundations having 
infinitely rigid sidewalls and mat, which are all in perfect 
contact with the soil. Moreover, the backfill must be of 
very good quality and have the same properties with the 
soil beneath the mat. These are rather extreme conditions 
and, thus, yield an upper bound of the possible effect of 
embedment. 

Table 8 displays five simple and sufficiently accurate 
formulae for the static stiffnesses of cylindrical founda- 
tions, perfectly embedded in a homogeneous soil layer 
overlying bedrock. It is evident that embedment increases 
the values of the static stiffnesses substantially. The increase 
in D/R is especially beneficial to the two rotational modes, 
rocking and torsion; the two translational modes, vertical 
and horizontal, are considerably less affected (factors of 

1/2 and 2/3 for vertical and horizontal loading, as compared 
to 2 and 2.67 for rocking and torsion). 

In contrast, the effect of D[H is more visible in the 
vertical and horizontal modes, appreciably less important 
in rocking, and negligible in torsion; this is consistent with 
the expected depths of the corresponding 'pressure bulbs', 
discussed in the preceding sections. 

Note that with embedded foundations the cross-coupling 
stiffness, Khr, can no longer be neglected, being approxi- 
mately equal to 0.4KhD. 

The effect of embedment on the frequency variation of 
the dynamic stiffness and damping coefficients is demon- 
strated in Fig. 19. We notice that k is not very sensitive to 
D[R. In fact, Elsabee etal .  H4 recommended that the actual 
frequency variation of k of an embedded foundation be 
approximated by the variation of the corresponding surface 
foundation. This seems to be very reasonable for all vibra- 
tion modes at low frequencies. For rocking and torsion, in 
particular, the approximation will for all practical purposes 
be good throughout the frequency range examined; in other 
words, the beneficial effect of increasing D/R on the static 
rotational stiffnesses is preserved even at higher values of 
ao, at least for not very large D/R ratios. However, beyond 
the first resonant frequency, vertical and swaying vibrations 
exhibit undulations in k which cannot be well reproduced 
with the results of surface foundations. 

All damping coefficients increase substantially with 
increasing embedment, although below the first resonance, 
aor, they remain small. It has been recommended 9°' u4 that 
for ao >aor, c be taken equal to a constant value, corre- 
sponding to the average value of c of a foundation em- 
bedded in a halfspace. To estimate this latter value of c, 
use may be made of the simple expressions derived by 
Dobry et al. 9s on the basis of simple but realistic physical 
approximations. For the two translational modes, the fre- 
quency-independent damping coefficients for cylindrical 
foundations embedded in a halfspace are approximated by: 

1r(2 --v) 1 + 1.3(D/R)  [1 + (3.6/n(1 --v))] 
ch - - -  (64) 

8 1 + ~3 (D/R) 

and 

I + l . 8 5 ( 1 - - v ) ( D / R )  
% =~ 0.85 (65) 

1 + ~ (D/R) 

The increase of the two damping coefficients with D/R 
is reflected in the much larger coefficients they are multi- 

Table 8. Static stiffnesses of  rigid embedded cylindrical foundations 'welded' into a homogeneous soil stratum-over-bedrock* 

Type of loading Static stiffness Prof'fle 

4GR(1+128R  1 1 D '  D D/H ] k~---'~R 
Vertical l--v\ " )( + 2 R X I +  0"85--0"28"R 1 - - ~ ] 5  ~ I ~ 

8GR(I+IR)( I+2D)(I+-~ D) - . . . ' .  
Horizontal 2 -- v~ 

/ / / / / / / / / I / / / / / 2  ):))22)) 
8GR 3 [ 1 R \ /  

Rocking 3(-TZ~_vj t 1 + g ~ ) [ l +  2 D) (I+ 0.7 D) Range of validity: 
_D<2 

Coupled horizontal-rocking 0.40KhD R 

Torsion ~ GR'(1 + 2.67 D ) D "0"5' 

* From Elsabee et al. H4 and Kausel et al. "s 
t For foundation with deeper embedment the formulae underprediet the 'actual' increase in the stiffnesses 
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Figure 19. Effect o f  embedment on dynamic coefficients o f  a rigid cylindrical foundation on stratum-over-bedrock 
(H/R = 3, v = 1/3, ~ = 0.05) 3a'~ 9° 

plied with in the numerator than in the denominator; e.g. 
for v = 0.40, ch is proportional to (1+ 3.8D/R)/(l+ 0.67 
D/R) and c v is proportional to (1 + 1.1D]R)](1 + 0.SD/R). 
Expressions similar to those of equations (64)-(65) have 
not been developed for rocking and torsion. 

It is finally noted that, with very good accuracy, one 
may set for the cross-coupling impedance: 

k h r  = 1 ; Chr = 0 (66) 

Imperfect contact between sidewall and backfdl 

Two recent studies have addressed the question of the 
dynamic response of embedded foundations, the sidewalls 
of which are not perfectly bonded to the backfdl, ss'ns 
In both studies, the nonlinear contact phenomena associ- 
ated with separation and sliding are modeled in an approxi- 
mate way. Thus, Tassonlas assumes that no contact exists 
between sidewall and backf'dl near the ground surface but 
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that a perfect contact is effective over a height equal to d 
above the basement. By allowing d to vary between 0 and 
D all cases between the extremes of 'no-contact' and 
'welded-contact' could be studied. On the other hand, 
Novak et al. considers the sidewalls to be in contact not 
with the undisturbed soil but with a cylindrical zone 
consisting of softer material. By allowing the shear modulus 
of this zone to take values between the shear modulus of 
the backfiU and zero, various qualities of contact could be 
considered. Note that a similar parametric study for static- 
ally loaded foundations, the sidewalls of which are sur- 
rounded by a soft cylindrical zone, has been presented by 
Johnson et al. 116 Only results from Tassoulas 8s are shown 
herein. 

The sensitivity of the static stiffnesses to variation in the 
contact-height over embedment ratio, d/D, is graphically 
displayed in Fig. 20. The effect is essentially independent 
of H[R and D/R; hence only one curve is plotted for each 
mode. Consistent with the observations made in the 
previous subsection, the effects of d[D are very significant 
for rocking and torsional loading, substantial for horizontal 
loading and secondary for vertical loading. For instance, 
the 'welded-contact' stiffnesses (diD = 1) are 2.74, 2.33, 
1.60 and 1.30 times larger than the 'no-contact' stiffnesses 
(diD = 0) for rocking, torsional, horizontal and vertical 
loading, respectively. 

Figure 21 portrays the effect of diD on the variation of 
k and c versus So. The stiffness coefficients are only slightly 
affected by diD at low frequencies; at higher frequencies, 
however, the sharpness of the resonant valleys decreases as 
diD increases. On the other hand, the damping coefficients 
show a substantial decline as the 'welded-contact' height, d, 
between sidewalls and backfill, decreases. Exception: c=, 
which is less affected by diD as well as by D[R (see equa- 
tion (65) and Fig. 19). Notice also that the influence of 
d/D on Cr depends strongly on the particular frequency 
of oscillation. 

Embedded strip foundations 
Dynamic compliance functions of rigid strip foundations 

embedded in a homogeneous soil stratum overlying bedrock 
have been obtained by Chang-Liang. s7 Perfect contact is 
assumed between the two sidewalls and the backfiU, and 
the results are cast in the form of equation (20) (i.e. dyn- 
amic compliances normalized with the static stiffnesses). 

Jakub and Roesset, s6,6s by utilizing the results of an 
extensive parametric study, developed simple expressions 
for the static horizontal and rocking stiffnesses, which are 
displayed in Table 9. It is evident that the influence of 
embedment is much smaller for strip than it is for circular 
foundations. In fact, the two coefficients multiplying D/B 
in Table 9 (1/3 and 1) are exactly one-half of those multi- 
plying D/H in Table 8 (2/3 and 2, respectively). Intuitively, 
these results appear to be very reasonable since a strip 
foundation has sidewalls along two sides only. Thus, per 
unit length, the ratio of sidewall area to basement area is 
equal to 2D/2B = D/B. Whereas, for a circular foundation 
the ratio of the two areas is 2nRDhrR2= 2(D/R)! This 
seems to imply that the influence of D/R or D[B is pro- 
portional to the sidewall-over-basemat area ratio. 

The two normalized compliance functions, fhl+ifa2 
and frl + f  r2, show practically no sensitivity to the D/B 
ratio and hence are not reproduced herein. Reference is 
made to the original publication s7 for more detailed 
information. 

Rectangular foundations embedded in halfspace 
Dominguez and Roesset 47 developed a boundary element 

formulation on the basis of which they derived unique 
results for embedded rectangular foundations perfectly 
bonded into a homogeneous halfspace. Figure 22 presents 
a few of their results for a foundation with an aspect ratio 
LIB = 2 and three embedment ratios, D/B = O, 2/3 and 
4/3. Only the stiffness and damping coefficients are plotted 
in Fig. 22 versus ao. 

Results for the static stiffnesses are not shown here. It 
appears, however, that the sensitivity of most stiffnesses on 
D/B is not as strong as in the case of circular foundations, 
but is quite stronger than that of a strip footing. Note that 
the sidewall-basemat area ratio in this case becomes equal to 
4(B+L)D/(2B.2L)= 1.5(D/B), which is in between the 
1 and 2 times the embedment ratio of the previous two 
cases! 

The dependence on D[B of the k and c versus ao curves, 
shown in Fig. 2, reveals the following trends. 

1. In the frequency range examined the sensitivity of 
the stiffness coefficients to large variations in D[B is quite 
small. For all modes, the decline of k with ao at low fre- 
quencies becomes sharper as the level of embedment 
increases. 
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Figure 20. Static stiffnesses of  cylindrical foundations with different diD ratios (H/R = 3, D/R = 1, v = 1/3) as 
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Table 9. Static stiffnesses of  rigid embedded strip foundations 'welded' into a homogeneous stratum-over.bedrock* 

Type of loading Static stiffness Prof'fle 

Horizontal 

Rocking 

2.1Gt 1 4 ~,[I+ 2B) (1+-~ - ) (1+~  D) 

lrGB ~ 1 B /lll/I///I/] II) ] ) ) )  

HIB ~ 2 

D/B < 2/3 

* From Jakub and Roesset s6,6s 

2. All the damping coefficients increase substantially 
with increasing D/B. The effect is particularly important for 
the rotational modes. Indeed, for rocking and torsion c 
does not tend to zero in the low frequency range when the 
foundation is embedded. The practical significance of this 
phenomenon is obvious, especially in cases involving small 
amounts of  hysteretic damping in the soil. 

SYNTHESIS: COMPARATIVE STUDY AND 
PRACTICAL RECOMMENDATIONS 

The previous sections have studied the effects of crucial 
problem parameters, related to the soil prof'de and the 
foundation geometry, on the dynamic response of massiess 
rigid foundation plates. It is interesting, however, to also 
investigate the influence of these parameters on the 
response of a massive foundation, and thus develop a better 
perspective of the role of some of these parameters. We 
note that, in such a study, equations (39)-(46) can be 
directly utilized to obtain amplitudes of steady-state 
motion, once the dynamic impedance functions have been 
evaluated. 

The goal of the comparative study described here is to 
investigate the sensitivity of  the response of massive founda- 
tions to the exact variation with frequency of the dynamic 
stiffness and damping coefficients, k and c. To this end, 
two different foundations, both circular in plan, are con. 
sidered. Foundation A is a relatively heavy one, having a 
radius R = 2 m ,  a mass m = 4 O p R  3 and a central mass 
moment of inertia lox =m(O.75R) 2. Foundation B is a 
relatively light one, having R =1 m, m = 5 p R  3 and lox = 
mR 2. The center of gravity of the machine-foundation 
system is located in both cases at a distance z c = 1.10R 
above the base. Both foundations support a machine with 
an unbalanced mass m o rotating with an eccentricity do at 
frequencies co; the center of  rotation is located at a distance 
Zo = R above the center of gravity of the system, in each 
case. Thus, the excitation forces, referrad to the center of 
gravity, are: 

Q~ = m o  do 0o2 exp [i(0ot + 90 °)] (67) 

Qh =mo do 0o 2 exp (i0ot) (68) 

Mr = Qh "Zo (69) 

and the solution can be derived from equations (39), (41) 
and (42) by substituting: Qv = modo 0o2, ~v = 90°, Qh = 
modo0o 2, ¢kh = O, Mr=  zo Qh and er = O. 

Four different sets (1, 2, 3 and 4) of dynamic imped- 
ance functions, K expressed in the form of equation (17), 
are considered. Set 1 corresponds to a surface foundation 
on a halfspace (Fig. 5). Set 2 corresponds to a surface 
foundation on a stratum-over-bedrock with H/R = 2 (Fig. 
8). Sets 3 and 4 correspond to a foundation embedded 
in a stratum with H/R = 3 and D/R = 1; 'welded' sidewall- 

backfill contact is assumed for set 3, no contact for set 4 
(Fig. 21). Material (hysteretic) damping is invariably taken 
equal to 0.05. 

In our desire to isolate the effects of the dynamic parts 
of the impedance, k + iaoe, from the effects of  the static 
stiffnesscs, K, the latter are assumed to be the same in all 
four sets. Thus, the four cases differ only in the corre- 
sponding k and e values. In reality, of course, the static 
stiffnesses of each set differ substantially from the corre- 
sponding stiffnesses of the other sets. For instance, the 
horizontal stiffnesses corresponding to sets 1, 2, 3 and 4, 
are in the ratio of 1: 1.25:2.76: 1.725, respectively. The 
appreciable influence of these static stiffnesses on the 
foundation response is well known, however, and requires 
no further demonstration. After all, the profession can 
determine static displacements with sufficient confidence, 
and the numerous closed-form expressions offered in this 
paper make very simple the task of reliably estimating the 
static stiffnesses of  essentially arbitrary foundations on/in 
a variety of  soil profiles. 

The question then which we try to answer in this section 
is the following: After having properly determined the static 
stiffnesses of a foundation, how important is it to also 
accurately determine the dynamic stiffness and damping 
coefficients at the frequency range of interest? 

Figure 22 compares the four response spectra of  founda- 
tions A and B, corresponding to the aforementioned cases 
1, 2, 3 and 4. Plotted in this figure is the variation with ao 
of the normalized amplitude of the horizontal displacement, 
lutl, experienced by the highest point of each foundation, 
at a distance z t = 1.2R above the center of gravity. The 
following trends are worthy of note in Fig. 22. 

1. For frequency factors ao > 1, no differences exist 
between the four response curves, of either the heavy or the 
light foundation. In fact, the four displacement curves 
attain a nearly constant value which is apparently con- 
trolled by the static stiffnesses of each foundation. (Re- 
member that in our study these stiffnesses do not change 
from case to case.) Such a behavior is consistent with the 
high-frequency response of a 1-dof oscillator under a 
rotating-mass-type excitation. 7 The implication is clear: 
at relatively high frequency factors, the motion of a rigid 
massive foundation is controlled by its static stiffne~es and 
it is not influenced by the exact variation of k and c with 
ao; therefore, one can safely use for k and c the values 
obtained for surface foundations on halfspace, regardless 
of  the actual soil profde and depth of embedment! 

2. In the low frequency range ao < 1, the response 
curves depend on the assumed dynamic coefficients as well 
as the inertia characteristics of  the foundation. 

The 'heavy' foundation experiences two resonant peaks. 
The first occurs at a frequency ao ~ 0.15 regardless of the 
exact values of  k and e. The only difference from case to 
case is in the maximum displacement amplitude, which is 
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rectangular foundations on halfspace (LIB = 2, v = I /3 ) 4~ 

apparently contxoUed by the inertia characteristics and the 
radiation damping of each system. (At such frequencies 
k ~= 1, while the hysteretic damping is invariably equal to 
0.05.) As a result, use of the available halfspace curves for 
c leads to an underprediction of the peak response. 

The second resonant frequency and resonant peak are 
both sensitive to the assumed values of k and c. It appears 
that these peaks are the result of resonance phenomena 
due to standing waves in the soil stratum, and, hence, they 
are very little influenced by the foundation inertia. Notice 
that for the halfspace (case 1) the resonance is very fiat 
since no standing waves can be generated in the soil. Thus, 
once more, the halfspace assumption proves unconservative. 

The 'light' foundation, on the other hand, experiences 
only one resonance which reflects the characteristics of 
both the foundation inertia and the system dynamic 
coefficients. The main influence of k and c is seen on the 
peak amplitudes. Notice again that the halfspace values lead 
to the flattest peak, a consequence of the high radiation 
damping in a boundless medium. 

On the basis of these observations and the results of 
some other case studies not presented herein, the following 
practical recommendation can be made: At  relatively low 
frequency factors, the motion of a rigid massive foundation 
is controlled by its static stiffnesses, K, as well as its 
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dynamic stiffness and damping coefficients, k and c; c can 
be assumed to be equal to: 

0 for f~<f, 
c = ( 7 0 )  

C h a l f s p a e  e for f > f ~  

where f~ = V/4H is the first resonant frequency of the soil- 
foundation system for each particular mode; k can be 
approximated with the values obtained for surface founda- 
tions on a stratum-on-rigid-base; if, however, such solutions 
are not available, use can be made of the halfspace values of 
k provided that the latter are approximately corrected at 
and near the fundamental natural frequencies of the actual 
stratum, using as a guide the results of Fig. 8. 

The above conclusions and recommendations are strictly 
applicable to rigid massive foundations carrying rotating- 
mass-type machines. For constant-force-type excitations 
the recommendations are still reasonably accurate. Frame- 
foundations, however, may be quite sensitive to the exact 
variation of k and c at frequencies around the fundamental 
frequency of the superstructure. 

SOME OTHER TOPICS 

The dynamic behavior of pile foundations, the effects of a 
finite fiexular mat rigidity, and the dynamic interaction 
between adjacent foundations, are three topics that have 
received considerable attention in recent years. However, 
present knowledge and understanding of the phenomena 
related to these problems is more limited than for (single) 
rigid shallow foundations. Research is currently underway 
in several institutions, aimed at Idling the existing gaps of 
knowledge in these three areas. This section is restricted 
to a brief general discussion of these topics and a listing of 
pertinent references for a more detailed study. 

Dynamic impedances of  piles 
Results have been presented by numerous authors for 

end-bearing and floating single piles subjected to vertical, 
horizontal, rocking and torsional loading. One may broadly 
classify the developed formulations within three categories: 
(a) dynamic Winkler-foundation type formulations, which 
neglect the coupling between forces and displacements at 
various points along the pile-soil interface; 41-43,sT'H6,Hs 
(b) analytical continuum-type formulations, which neglect 
the secondary components of deformation and enforce the 
boundary conditions at the soil-pile interface by expand- 
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Figure 24. Lateral dynamic coefficients o f  single pile in 
1 2 2  an inhomogeneous stratum 

ing the contact pressure distribution to an infinite series 
in terms of the natural modes of vibration of the soil 
layer;T3-76, 7a and (c) finite-element formulations.119-121 

Figure 24 presents a typical variation of the horizontal 
impedance K h versus ao, for an end-bearing pile with 
length-over-diameter ratio, H/D, equal to 15. The soil- 
stratum consists of material with moduli increasing linearly 
with depth and a constant Poisson's ratio of 0.40, which is 
typical for normally consolidated clays. The pile is of 
circular cross-section and has a Young's modulus Ep = 
8000Es, where E s is the soil modulus at a depth z = H/4. 
This figure has been adapted from a recent study by Velez 
et al., ~22 who utilized the finite-element formulation of 
Blaney et al. H9 The dynamic impedance is expressed in the 
form: 

Kh = Kh(kh + 2i/3n) (71) 

where K h = static horizontal stiffness, k h = dynamic stiff- 
ness coefficient, and/3~ = equivalent critical damping ratio. 

It is evident from this figure, that the general character- 
istics of the pile behavior are similar to those of a shallow 
foundation on a soil stratum. The first resonance occurs 
almost precisely at the fundamental frequency of the in- 
homogeneous stratum in vertical shear waves, and no 
radiation damping occurs below this frequency. At higher 
f r e q u e n c i e s ,  k h attains an essentially constant value; the 
second resonance is barely noticeable, and hence of minor 
importance, despite the relatively small amount of assumed 
hysteretic damping (0.05). 

Reference is made to the aforementioned publications 
for detailed studies of the influence of the main problem 
parameters on the response of tingle piles. 

In the last few years, interest has switched to the dyn- 
amics of groups of piles, a substantially more complex 
problem than that of a single pile. The first results, based 
on a rigorous formulation, 123 indicate that the dynamic 
stiffness and damping coefficients of a large group of 
closely-spaced piles may be drastically different from the 
coefficients obtained by a simple superposition of the 
results for a single pile. More extensive parametric studies 
are, however, needed before definitive conclusions can be 
drawn and before simple formulae and dimensionless graphs 
of direct applicability are developed for practical use. 

Effects o f  finite foundation rigidity 
The in-plane (membrane) rigidity of mat foundations is 

practically infinitely large, when compared to the deform- 
ability of soils; hence, for horizontal and torsional loading 
most foundations clearly qualify as 'rigid', and the results 
of the preceding sections of this paper are thus pertinent. 
However, in many practical situations, the foundation 
response to vertical and rocking loading cannot be properly 
predicted without accounting for the finite out-of-plane 
(flexural) rigidity of the mat. 

A few studies have appeared lately on the dynamic 
behavior of flexible circular and rectangular plates resting 
on a homogeneous halfspace. 49-sl The additional dimension- 
less parameter which in this case controls the foundation 
response is the relative flexural rigidity factor RF= (Ef]Es). 
(1--u}).(t/B) 3, where El, vf and t are, respectively, the 
Young's modulus, Poisson's ratio and thickness of the 
foundation raft. In addition, moreover, the exact distri- 
bution of the applied loading influences appreciably the 
behavior, especially of very flexible foundations. 

The results of the aforementioned studies indicate a 
reduction in the vertical and rocking damping coefficients 
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C o and C r as the relative rigidity of the plate decreases. 
On the other hand, for small R F  valfles, the stiffness 
coefficients ke and k r do not exhibit as steep a decay with 
ao as the one observed with rigid foundations (Fig. 5, for 
v > 1/3). Although additional parameter studies are needed 
to draw definitive conclusions, the author believes that the 
main influence of a decreasing R F  on the response of a 
machine foundation materializes through the corresponding 
decrease of the static stiffnesses; in other words, the effect 
of the changes in k and c can be neglected, at least for 
realistic values of the RF factor. The results of the com- 
parative study offered in the preceding section clearly 
support such a recommendation. 

An idea of how sensitive the static stiffnesses, K v and 
K r, are to changes in the relative rigidity factor, RF, can be 
obtained from the results of Table 10. The vertical static 
stiffness of a circular mat supported by a homogeneous 
halfspace and loaded by either a uniformly or a parabolic- 
ally distributed load, are expressed in the form of equation 
(55). The 'correction' factor Jr ,  which accounts for the mat 
flexural rigidity, is given as a function of RF. The Jv versus 
RF  relationship was computed on the basis of some recent 
results by the author; t24 the average of the center and edge 
settlements were used in deriving the stiffness of the 
flexible mat. 

Dynamic interaction between ad/acent foundations 

The vibration of a machine foundation may sometimes 
appreciably affect a nearby structure; conversely, the 
presence of such a structure may influence the response of 
the machine foundation itself. This 'coupling' in the motion 
of two adjacent structures through the soil is referred to as 
'structure-soil-structure' interaction, and was first studied 
analytically by Warburton et al., ~Ts in connection with 
cylindrical rigid foundations on a halfspace. More recently, 
comprehensive studies have been presented by Chang- 
Liang s7 who considered two rigid strip foundations on a 
stratum-over-bedrock and by Roesset et al. ~26 for two rigid 
rectangular massive foundations or two structures idealized 
as simple 1-dof systems and also resting on the surface of a 
homogeneous stratum. The following conclusions may be 
drawn from the results of these studies. 

1. The presence of a nearby ('passive') mass has a rather 
small overall influence on the motion of the foundation 
carrying the machine ('active'). Perhaps the most important 
effect from a design point of view is the appearance of 
rocking motions, even under vertical excitation; this is 
apparently the result of waves that are reflected by the 
'passive' foundation. These effects increase when the masses 
of  the two foundations increase, when the distance between 
them decreases, and when the thickness of the soil stratum 

Table 10. Static vertical stiffness of flexible circular mat on 
haifspacet 

Jv(RF) 

General Uniform Parabolic 
expression RF load load* 

0.01 0.67 0A6 
K 4GR J R 0.1 0.72 0.54 

v = ~ v ( F )  1 0.92 0.82 
10 0.99 0.97 
100 1.00 0.98 

* p = 2po(1--r2/R =) 
~f Based on results by Gazetas 124 

increases. But even for distances as small as 5B (or 5R) the 
presence of the second mass will in most cases be of 
secondary importance, in view of the many other uncer- 
tainties of the problem. It is noted, however, that the 
natural frequencies of the soil-foundation system may also 
change duo to the interaction. 

2. The motions induced in the 'passive' foundation are 
larger than the motion changes due to interaction effects on 
the 'active' foundation. This is a quite logical result since 
waves emanating from the 'active' foundation excite the 
'passive' foundation before they are 'reflected' back to the 
'active' one. Typically, one may expect the motions in the 
second foundation to be about 20% of those experienced 
by the excited mass, for distances of the order of 5R and 
hysteretic damping ratio in the soil of 5%. However, for 
strip foundations (plane-strain problem) on deep soil 
deposits, the above value may increase to about 50%. 

To protect sensitive structures from the vibrations 
induced by a nearby machine foundation, 'active' and/or 
'passive' isolation measures may frequently be necessary. 
Results of experimental and theoretical investigations on 
the effectiveness of several isolation schemes have been 
published by Barkan, 1° Richart et al. 7 and Haupt. 12~ 

CONCLUSION 

The state-of-the-art of analysing the forced oscillations of 
shallow and deep foundations has advanced remarkably in 
the last 15 years and has reached a mature stage of develop- 
ment. Several formulations and computer programs have 
been developed to determine in a rational way the response 
of foundations having various shapes and supported on/in 
any kind of soil deposit. Numerous studies have been 
published exploring the nature of associated phenomena 
and shedding light on the role of the key parameters 
influencing the response. This paper has reviewed these 
developments and presented results in the form of simple 
formulae and dimensionless graphs for the dynamic imped- 
ance functions of circular, strip, rectangular and arbitrary- 
plan.shape foundations. The various results have been 
synthesized in a case study referring to two massive 
foundations, and practical recommendations have been 
made on how to inexpensively predict the response of 
foundations in practice. 

This progress in developing new methods of analysis 
for machine foundations has been paralleled by an equally 
impressive progress in our understanding of the dynamic 
behavior of soils and the development of excellent in situ 
and laboratory procedures to obtain representative values 
of dynamic soil parameters. 

The author believes that, at present, there is a great need  
to calibrate our analytical procedures by means of actual 
case histories. Systematic post-construction observations of 
actual foundation performances are the key to this so 
important task. After all, confidence in advanced methods 
of analysis can only be gained if these are proved capable 
of predicting the field behavior of actual foundations. 

Analytical work is also needed to improve the present 
knowledge and understanding of, among other topics, the 
dynamic behavior of groups of piles, including the influence 
of the pile-cap; the response of flexible mats founded on a 
soil stratum; the dynamic characteristics of foundations 
consisting of multiple isolated footings; and the effects of  
the non-uniform initial distribution of static stresses in the 
soil, arising from the weight of the structure. 
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NOTATION 

The following symbols are frequently used in the paper: 

H 
L 

R 
Ro 

Zc 

= thickness of  soil stratum 
= one-half of  the longest side of  a rectangular 

foundat ion 
= radius of  a cylindrical foundation 
= radius of  'equivalent '  circular foundation 

(equations (47) - (50) )  
= distance of  center of  gravity of  a machine- 

foundat ion system above the base. 

Related to material properties 

G = shear modulus of  soil 
r~ = increase of  shear modulus from the surface to 

a depth equal to R or B (applicable to inhomo- 
geneous soil deposits) 

n = EH/Ev,  where EH and E v  are the horizontal  
and vertical Young's moduli  of  a cross-aniso- 
tropic soil 

v = Poisson's ratio of  soil 
= hysteretic critical damping ratio o f  soil 

Related to foundation impedances 

K = static stiffness referred to the base o f  the 
foundation (Fig. 1) 

K = dynamic impedance function of  frequency; it 
may be expressed in one of  the following 
alternative forms: 

= Kl (W ) + i K 2 ( ~  ) 
= K(k  + iaoc) (1 + 2i~) 
= K(k  + iaoc) 

Calligraphic characters are used on the figures in place of  
the bold K,  k and c. 
k and k = (dynamic)  stiffness coefficients, functions o f  oJ 
c and c = (dynamic)  damping coefficients, functions o f  
ao = o~B/V s or coR/V s (dimensionless frequency 

factor) 
F = dynamic compliance function of  6o; it  may be 

expressed in one of  the following alternative 
forms: 

= Fl (co  ) + iF2(co) 

1 
K [f ' (~) + iA(~o)] 

Related to geometry 

B = half-width of  a strip footing or the shortest 
half-width of  a rectangular footing 

D = depth of  embedment  
d = height of  perfect sidewall-backfill contact  above 

the foundation base 

Subscripts 

v = vertical (also designated by z) 
h = horizontal  (also x,  y )  
r = rocking (also r x, ry) 
t = torsion (also rz) 
hr = coupled horizontal-rocking (also xry,  yrx)  
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